These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 19254768)
1. On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T. Marques JP; Maddage R; Mlynarik V; Gruetter R Neuroimage; 2009 Jun; 46(2):345-52. PubMed ID: 19254768 [TBL] [Abstract][Full Text] [Related]
2. Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. Abduljalil AM; Schmalbrock P; Novak V; Chakeres DW J Magn Reson Imaging; 2003 Sep; 18(3):284-90. PubMed ID: 12938122 [TBL] [Abstract][Full Text] [Related]
4. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. Baltes C; Radzwill N; Bosshard S; Marek D; Rudin M NMR Biomed; 2009 Oct; 22(8):834-42. PubMed ID: 19536757 [TBL] [Abstract][Full Text] [Related]
5. Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Pfeuffer J; Merkle H; Beyerlein M; Steudel T; Logothetis NK Magn Reson Imaging; 2004 Dec; 22(10):1343-59. PubMed ID: 15707785 [TBL] [Abstract][Full Text] [Related]
6. Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus. Volz S; Hattingen E; Preibisch C; Gasser T; Deichmann R Neuroimage; 2009 May; 45(4):1135-43. PubMed ID: 19349229 [TBL] [Abstract][Full Text] [Related]
7. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Wharton S; Bowtell R Neuroimage; 2010 Nov; 53(2):515-25. PubMed ID: 20615474 [TBL] [Abstract][Full Text] [Related]
8. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Deistung A; Schäfer A; Schweser F; Biedermann U; Turner R; Reichenbach JR Neuroimage; 2013 Jan; 65():299-314. PubMed ID: 23036448 [TBL] [Abstract][Full Text] [Related]
9. Preoperative imaging of superficially located glioma resection using short inversion-time inversion recovery images in high-field magnetic resonance imaging. Beppu T; Inoue T; Nishimoto H; Ogasawara K; Ogawa A; Sasaki M Clin Neurol Neurosurg; 2007 May; 109(4):327-34. PubMed ID: 17275995 [TBL] [Abstract][Full Text] [Related]
10. Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature. Dashner RA; Kangarlu A; Clark DL; RayChaudhury A; Chakeres DW J Magn Reson Imaging; 2004 Mar; 19(3):303-7. PubMed ID: 14994298 [TBL] [Abstract][Full Text] [Related]
11. In vivo assessment of myelination by phase imaging at high magnetic field. Lodygensky GA; Marques JP; Maddage R; Perroud E; Sizonenko SV; Hüppi PS; Gruetter R Neuroimage; 2012 Feb; 59(3):1979-87. PubMed ID: 21985911 [TBL] [Abstract][Full Text] [Related]
12. Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments. Kim HJ; Lee BI; Cho Y; Kim YT; Kang BT; Park HM; Lee SY; Seo JK; Woo EJ Physiol Meas; 2007 Nov; 28(11):1341-53. PubMed ID: 17978419 [TBL] [Abstract][Full Text] [Related]
13. The influence of white matter fibre orientation on MR signal phase and decay. Denk C; Hernandez Torres E; MacKay A; Rauscher A NMR Biomed; 2011 Apr; 24(3):246-52. PubMed ID: 21404336 [TBL] [Abstract][Full Text] [Related]
14. Investigating the effect of blood susceptibility on phase contrast in the human brain. Petridou N; Wharton SJ; Lotfipour A; Gowland P; Bowtell R Neuroimage; 2010 Apr; 50(2):491-8. PubMed ID: 20026280 [TBL] [Abstract][Full Text] [Related]
15. Imaging at high magnetic fields: initial experiences at 4 T. Uğurbil K; Garwood M; Ellermann J; Hendrich K; Hinke R; Hu X; Kim SG; Menon R; Merkle H; Ogawa S Magn Reson Q; 1993 Dec; 9(4):259-77. PubMed ID: 8274375 [TBL] [Abstract][Full Text] [Related]
17. Experimental nerve imaging at 1.5-T. Nolte I; Pham M; Bendszus M Methods; 2007 Sep; 43(1):21-8. PubMed ID: 17720560 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). Sedlacik J; Kutschbach C; Rauscher A; Deistung A; Reichenbach JR Neuroimage; 2008 Oct; 43(1):36-43. PubMed ID: 18678260 [TBL] [Abstract][Full Text] [Related]
19. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Saito N; Sakai O; Ozonoff A; Jara H Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology. Weber MH; Sharp JC; Latta P; Sramek M; Hassard HT; Orr FW Eur J Radiol; 2005 Jan; 53(1):96-102. PubMed ID: 15607859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]