These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

909 related articles for article (PubMed ID: 19255661)

  • 1. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of phase inversion on the formation and stability of one-step multiple emulsions.
    Morais JM; Rocha-Filho PA; Burgess DJ
    Langmuir; 2009 Jul; 25(14):7954-61. PubMed ID: 19441778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.
    Schmidts T; Dobler D; Nissing C; Runkel F
    J Colloid Interface Sci; 2009 Oct; 338(1):184-92. PubMed ID: 19595359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic approach for rapid interfacial tension measurement.
    Xu JH; Li SW; Lan WJ; Luo GS
    Langmuir; 2008 Oct; 24(19):11287-92. PubMed ID: 18785714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.
    Bonnet M; Cansell M; Placin F; Monteil J; Anton M; Leal-Calderon F
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):44-52. PubMed ID: 20207114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels.
    Zagnoni M; Le Lain G; Cooper JM
    Langmuir; 2010 Sep; 26(18):14443-9. PubMed ID: 20731333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.