These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 19255735)
1. The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency. Distelmaier F; Visch HJ; Smeitink JA; Mayatepek E; Koopman WJ; Willems PH J Mol Med (Berl); 2009 May; 87(5):515-22. PubMed ID: 19255735 [TBL] [Abstract][Full Text] [Related]
2. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency. Visch HJ; Koopman WJ; Leusink A; van Emst-de Vries SE; van den Heuvel LW; Willems PH; Smeitink JA Biochim Biophys Acta; 2006 Jan; 1762(1):115-23. PubMed ID: 16213125 [TBL] [Abstract][Full Text] [Related]
3. Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Valsecchi F; Esseling JJ; Koopman WJ; Willems PH Biochim Biophys Acta; 2009 Dec; 1792(12):1130-7. PubMed ID: 19171191 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of mitochondrial bioenergetics, dynamics, endoplasmic reticulum-mitochondria crosstalk, and reactive oxygen species in fibroblasts from patients with complex I deficiency. Leipnitz G; Mohsen AW; Karunanidhi A; Seminotti B; Roginskaya VY; Markantone DM; Grings M; Mihalik SJ; Wipf P; Van Houten B; Vockley J Sci Rep; 2018 Jan; 8(1):1165. PubMed ID: 29348607 [TBL] [Abstract][Full Text] [Related]
5. Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. Visch HJ; Koopman WJ; Zeegers D; van Emst-de Vries SE; van Kuppeveld FJ; van den Heuvel LW; Smeitink JA; Willems PH Am J Physiol Cell Physiol; 2006 Aug; 291(2):C308-16. PubMed ID: 16554405 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. Visch HJ; Rutter GA; Koopman WJ; Koenderink JB; Verkaart S; de Groot T; Varadi A; Mitchell KJ; van den Heuvel LP; Smeitink JA; Willems PH J Biol Chem; 2004 Sep; 279(39):40328-36. PubMed ID: 15269216 [TBL] [Abstract][Full Text] [Related]
7. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Freestone PS; Chung KK; Guatteo E; Mercuri NB; Nicholson LF; Lipski J Eur J Neurosci; 2009 Nov; 30(10):1849-59. PubMed ID: 19912331 [TBL] [Abstract][Full Text] [Related]
8. Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain Complex II deficiency. Mbaya E; Oulès B; Caspersen C; Tacine R; Massinet H; Pennuto M; Chrétien D; Munnich A; Rötig A; Rizzuto R; Rutter GA; Paterlini-Bréchot P; Chami M Cell Death Differ; 2010 Dec; 17(12):1855-66. PubMed ID: 20489732 [TBL] [Abstract][Full Text] [Related]
9. Calcium Release from Endoplasmic Reticulum Involves Calmodulin-Mediated NADPH Oxidase-Derived Reactive Oxygen Species Production in Endothelial Cells. Sakurada R; Odagiri K; Hakamata A; Kamiya C; Wei J; Watanabe H Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30987055 [TBL] [Abstract][Full Text] [Related]
12. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Blanchet L; Smeitink JA; van Emst-de Vries SE; Vogels C; Pellegrini M; Jonckheere AI; Rodenburg RJ; Buydens LM; Beyrath J; Willems PH; Koopman WJ Sci Rep; 2015 Jan; 5():8035. PubMed ID: 25620325 [TBL] [Abstract][Full Text] [Related]
13. Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Dahlem YA; Wolf G; Siemen D; Horn TF Cell Calcium; 2006 May; 39(5):387-400. PubMed ID: 16513166 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress mediated Ca(2+) release manifests endoplasmic reticulum stress leading to unfolded protein response in UV-B irradiated human skin cells. Farrukh MR; Nissar UA; Afnan Q; Rafiq RA; Sharma L; Amin S; Kaiser P; Sharma PR; Tasduq SA J Dermatol Sci; 2014 Jul; 75(1):24-35. PubMed ID: 24794973 [TBL] [Abstract][Full Text] [Related]
15. Ciglitazone induces apoptosis via activation of p38 MAPK and AIF nuclear translocation mediated by reactive oxygen species and Ca(2+) in opossum kidney cells. Kwon CH; Park JY; Kim TH; Woo JS; Kim YK Toxicology; 2009 Mar; 257(1-2):1-9. PubMed ID: 19110029 [TBL] [Abstract][Full Text] [Related]
16. Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca²⁺ signal. Domijan AM; Kovac S; Abramov AY J Cell Sci; 2014 Jan; 127(Pt 1):21-6. PubMed ID: 24198393 [TBL] [Abstract][Full Text] [Related]
17. ER stress-associated transcription factor CREB3 is essential for normal Ca Smith BS; Hewitt T; Bakovic M; Lu R Mitochondrion; 2023 Mar; 69():10-17. PubMed ID: 36627030 [TBL] [Abstract][Full Text] [Related]
18. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells. Lu YC; Lin ML; Su HL; Chen SS Anticancer Res; 2016 Feb; 36(2):697-705. PubMed ID: 26851027 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells. Zhang Y; Soboloff J; Zhu Z; Berger SA Mol Pharmacol; 2006 Oct; 70(4):1424-34. PubMed ID: 16849592 [TBL] [Abstract][Full Text] [Related]