BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 1925603)

  • 1. Reversible inhibition of tomato fruit senescence by antisense RNA.
    Oeller PW; Lu MW; Taylor LP; Pike DA; Theologis A
    Science; 1991 Oct; 254(5030):437-9. PubMed ID: 1925603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process.
    Theologis A; Oeller PW; Wong LM; Rottmann WH; Gantz DM
    Dev Genet; 1993; 14(4):282-95. PubMed ID: 8222344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants.
    Jakubowicz M
    Acta Biochim Pol; 2002; 49(3):757-74. PubMed ID: 12422245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning of 1-aminocyclopropane-1-carboxylate (ACC) synthetase cDNA and the inhibition of fruit ripening by its antisense RNA in transgenic tomato plants.
    Liu C; Tian Y; Shen Q; Jiang H; Ju R; Yan T; Liu C; Mang K
    Chin J Biotechnol; 1998; 14(2):75-84. PubMed ID: 10196631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The never ripe mutation blocks ethylene perception in tomato.
    Lanahan MB; Yen HC; Giovannoni JJ; Klee HJ
    Plant Cell; 1994 Apr; 6(4):521-30. PubMed ID: 8205003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants.
    Klee HJ; Hayford MB; Kretzmer KA; Barry GF; Kishore GM
    Plant Cell; 1991 Nov; 3(11):1187-93. PubMed ID: 1821764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes for the ethylene-forming enzyme and inhibition of ethylene synthesis in transgenic plants using antisense genes.
    Bouzayen M; Hamilton A; Picton S; Barton S; Grierson D
    Biochem Soc Trans; 1992 Feb; 20(1):76-9. PubMed ID: 1633997
    [No Abstract]   [Full Text] [Related]  

  • 8. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants.
    Sato T; Theologis A
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6621-5. PubMed ID: 2671999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening.
    Theologis A
    Cell; 1992 Jul; 70(2):181-4. PubMed ID: 1638627
    [No Abstract]   [Full Text] [Related]  

  • 10. The ethylene gas signal transduction pathway: a molecular perspective.
    Johnson PR; Ecker JR
    Annu Rev Genet; 1998; 32():227-54. PubMed ID: 9928480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits.
    Ayub R; Guis M; Ben Amor M; Gillot L; Roustan JP; Latché A; Bouzayen M; Pech JC
    Nat Biotechnol; 1996 Jul; 14(7):862-6. PubMed ID: 9631011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli-Based Expression and In Vitro Activity Assay of 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase.
    Satoh S; Kosugi Y
    Methods Mol Biol; 2017; 1573():47-58. PubMed ID: 28293839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.
    Akagi A; Dandekar AM; Stotz HU
    Phytopathology; 2011 Nov; 101(11):1311-21. PubMed ID: 21809978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress.
    Datta R; Kumar D; Sultana A; Hazra S; Bhattacharyya D; Chattopadhyay S
    Plant Physiol; 2015 Dec; 169(4):2963-81. PubMed ID: 26463088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ethylene biosynthesis associated with ripening in banana fruit.
    Liu X; Shiomi S; Nakatsuka A; Kubo Y; Nakamura R; Inaba A
    Plant Physiol; 1999 Dec; 121(4):1257-66. PubMed ID: 10594112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.
    Inaba A; Liu X; Yokotani N; Yamane M; Lu WJ; Nakano R; Kubo Y
    J Exp Bot; 2007; 58(5):1047-57. PubMed ID: 17185740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit.
    Katz E; Lagunes PM; Riov J; Weiss D; Goldschmidt EE
    Planta; 2004 Jun; 219(2):243-52. PubMed ID: 15014996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detoxification of cyanide by plants and hormone action.
    Manning K
    Ciba Found Symp; 1988; 140():92-110. PubMed ID: 3073064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis.
    Pesis E; Ibáñez AM; Phu ML; Mitcham EJ; Ebeler SE; Dandekar AM
    J Agric Food Chem; 2009 Apr; 57(7):2786-92. PubMed ID: 19253953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and expression of an ethylene-related mRNA from tomato.
    Holdsworth MJ; Bird CR; Ray J; Schuch W; Grierson D
    Nucleic Acids Res; 1987 Jan; 15(2):731-9. PubMed ID: 3029690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.