These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19256351)

  • 1. [Cu and Fe bioleaching in low-grade chalcopyrite and bioleaching mechanisms using Penicillium janthinellum strain GXCR].
    Zhou Y; Huang X; Huang G; Bai X; Tang X; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Nov; 24(11):1993-2002. PubMed ID: 19256351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of copper from chalcopyrite ore by fungi.
    Rao DV; Shivannavar CT; Gaddad SM
    Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.
    Zhou H; Zhang R; Hu P; Zeng W; Xie Y; Wu C; Qiu G
    J Appl Microbiol; 2008 Aug; 105(2):591-601. PubMed ID: 18422958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Wang Y; Shi Y
    J Hazard Mater; 2013 Mar; 248-249():107-14. PubMed ID: 23352906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans.
    Bayat O; Sever E; Bayat B; Arslan V; Poole C
    Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation.
    Naderi A; Vakilchap F; Motamedian E; Mousavi SM
    Appl Microbiol Biotechnol; 2023 Dec; 107(23):7331-7346. PubMed ID: 37736792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological leaching of a chalcopyrite concentrate by Thiobacillus ferrooxidans.
    Sakaguchi H; Silver M
    Biotechnol Bioeng; 1976 Aug; 18(8):1091-1101. PubMed ID: 953169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant.
    Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT
    Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of pre-treatment on Cu2+ absorption of Penicillium janthinellum strain GXCR].
    Huang X; Sun C; Chen X; Qin H; Hu M; Yuan Y; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Jan; 25(1):76-83. PubMed ID: 19441230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.
    Vakylabad AB; Schaffie M; Naseri A; Ranjbar M; Manafi Z
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1081-104. PubMed ID: 27000968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.
    Spolaore P; Joulian C; Gouin J; Morin D; d'Hugues P
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):441-8. PubMed ID: 20890755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic effect of light illumination on bioleaching of chalcopyrite.
    Zhou S; Gan M; Zhu J; Li Q; Jie S; Yang B; Liu X
    Bioresour Technol; 2015 Apr; 182():345-352. PubMed ID: 25722073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture.
    Takeda M; Knight JD
    Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.
    Vakilchap F; Mousavi SM; Shojaosadati SA
    Bioresour Technol; 2016 Oct; 218():991-8. PubMed ID: 27450129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.