These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19256401)

  • 1. [Mechanism of interaction between Ag+ and Saccharomyces cerevisiae].
    Chen C; Wang JL
    Huan Jing Ke Xue; 2008 Dec; 29(12):3561-7. PubMed ID: 19256401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of Ag+ biosorption by the waste biomass of Saccharomyces cerevisiae].
    Chen C; Wang JL
    Huan Jing Ke Xue; 2008 Nov; 29(11):3200-5. PubMed ID: 19186828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular surface characteristics of Saccharomyces cerevisiae before and after Ag(I) biosorption.
    Chen C; Wen D; Wang J
    Bioresour Technol; 2014 Mar; 156():380-3. PubMed ID: 24507875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cation (K+, Mg2+, Na+, Ca2+) release in Zn(II) biosorption by Saccharomyces cerevisiae].
    Chen C; Wang JL
    Huan Jing Ke Xue; 2006 Nov; 27(11):2261-7. PubMed ID: 17326437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS.
    Chen C; Wang J
    Appl Microbiol Biotechnol; 2008 May; 79(2):293-9. PubMed ID: 18414849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.
    Zhao Y; Wang D; Xie H; Won SW; Cui L; Wu G
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):69-77. PubMed ID: 24996651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Kinetics and equilibrium of Ni2+ biosorption by waste biomass of Saccharomyces cerevisia].
    Gao RY; Wang JL
    Huan Jing Ke Xue; 2007 Oct; 28(10):2315-9. PubMed ID: 18268998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling.
    Bayo J; Esteban G; Castillo J
    Environ Technol; 2012; 33(7-9):761-72. PubMed ID: 22720399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biosorption of direct scarlet dye on magnetically modified Saccharomyces cerevisiae cells].
    Wu Q; Shan Z; Shen M; Li S; Chen H
    Sheng Wu Gong Cheng Xue Bao; 2009 Oct; 25(10):1477-82. PubMed ID: 20112691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Interaction mechanism between Zn(II) and Saccharomyces cerevisiae using EXAFS].
    Chen C; Xie YN; Du YH; Wang JL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1666-70. PubMed ID: 18763520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste--unusual isotherms and insights of binding mechanism.
    Witek-Krowiak A; Harikishore Kumar Reddy D
    Bioresour Technol; 2013 Jan; 127():350-7. PubMed ID: 23138058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass.
    Zhang H; Li Q; Wang H; Sun D; Lu Y; He N
    Appl Biochem Biotechnol; 2007 Oct; 143(1):54-62. PubMed ID: 18025596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions.
    Ozsoy HD; Kumbur H; Saha B; van Leeuwen JH
    Bioresour Technol; 2008 Jul; 99(11):4943-8. PubMed ID: 17964150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica.
    Shinde NR; Bankar AV; Kumar AR; Zinjarde SS
    J Environ Manage; 2012 Jul; 102():115-24. PubMed ID: 22531429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr.
    Tang Y; Chen L; Wei X; Yao Q; Li T
    J Hazard Mater; 2013 Jan; 244-245():603-12. PubMed ID: 23182246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata.
    Nigam S; Gopal K; Vankar PS
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4000-8. PubMed ID: 23208752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk.
    Saeed A; Iqbal M; Höll WH
    J Hazard Mater; 2009 Sep; 168(2-3):1467-75. PubMed ID: 19386413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil.
    Huang F; Dang Z; Guo CL; Lu GN; Gu RR; Liu HJ; Zhang H
    Colloids Surf B Biointerfaces; 2013 Jul; 107():11-8. PubMed ID: 23466537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cation exchanges during the process of Cd(2+) absorption by Alfalfa in aqueous solutions].
    Li YP; Yin H; Ye JS; Peng H; Qin HM; Long Y; He BY; Zhang N; Tong Y; Peng SF
    Huan Jing Ke Xue; 2011 Nov; 32(11):3341-7. PubMed ID: 22295633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.