BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19256496)

  • 1. High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains.
    Kühne D; Klappenberger F; Decker R; Schlickum U; Brune H; Klyatskaya S; Ruben M; Barth JV
    J Am Chem Soc; 2009 Mar; 131(11):3881-3. PubMed ID: 19256496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-template assembly of two-dimensional metal-organic coordination networks.
    Stepanow S; Lin N; Barth JV; Kern K
    J Phys Chem B; 2006 Nov; 110(46):23472-7. PubMed ID: 17107200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards surface-supported supramolecular architectures: tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100).
    Lingenfelder MA; Spillmann H; Dmitriev A; Stepanow S; Lin N; Barth JV; Kern K
    Chemistry; 2004 Apr; 10(8):1913-9. PubMed ID: 15079830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring two-dimensional coordination reactions: directed assembly of co-terephthalate nanosystems on Au(111).
    Clair S; Pons S; Fabris S; Baroni S; Brune H; Kern K; Barth JV
    J Phys Chem B; 2006 Mar; 110(11):5627-32. PubMed ID: 16539506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces.
    Kley CS; Čechal J; Kumagai T; Schramm F; Ruben M; Stepanow S; Kern K
    J Am Chem Soc; 2012 Apr; 134(14):6072-5. PubMed ID: 22458838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface.
    Shi Z; Lin N
    J Am Chem Soc; 2010 Aug; 132(31):10756-61. PubMed ID: 20681708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating 2D metal-organic networks via ligand control.
    Lin N; Stepanow S; Vidal F; Barth JV; Kern K
    Chem Commun (Camb); 2005 Apr; (13):1681-3. PubMed ID: 15791297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral kagomé lattice from simple ditopic molecular bricks.
    Schlickum U; Decker R; Klappenberger F; Zoppellaro G; Klyatskaya S; Auwärter W; Neppl S; Kern K; Brune H; Ruben M; Barth JV
    J Am Chem Soc; 2008 Sep; 130(35):11778-82. PubMed ID: 18693686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional nanotemplates as surface cues for the controlled assembly of organic molecules.
    Cicoira F; Santato C; Rosei F
    Top Curr Chem; 2008; 285():203-67. PubMed ID: 23636679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional self-organization of an ordered Au silicide nanowire network on a Si(110)-16 x 2 surface.
    Hong IeH; Yen SC; Lin FS
    Small; 2009 Aug; 5(16):1855-61. PubMed ID: 19544319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transformation of two-dimensional metal-organic coordination networks driven by intrinsic in-plane compression.
    Liu J; Lin T; Shi Z; Xia F; Dong L; Liu PN; Lin N
    J Am Chem Soc; 2011 Nov; 133(46):18760-6. PubMed ID: 21985163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Dimensional Metal-Organic Coordination Structures on Graphene.
    Li J; Solianyk L; Schmidt N; Baker B; Gottardi S; Moreno Lopez JC; Enache M; Monjas L; van der Vlag R; Havenith RWA; Hirsch AKH; Stöhr M
    J Phys Chem C Nanomater Interfaces; 2019 May; 123(20):12730-12735. PubMed ID: 31156737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron nitride nanomesh.
    Corso M; Auwärter W; Muntwiler M; Tamai A; Greber T; Osterwalder J
    Science; 2004 Jan; 303(5655):217-20. PubMed ID: 14716010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.
    Urgel JI; Cirera B; Wang Y; Auwärter W; Otero R; Gallego JM; Alcamí M; Klyatskaya S; Ruben M; Martín F; Miranda R; Ecija D; Barth JV
    Small; 2015 Dec; 11(47):6358-64. PubMed ID: 26524215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical assembly of two-dimensional homochiral nanocavity arrays.
    Spillmann H; Dmitriev A; Lin N; Messina P; Barth JV; Kern K
    J Am Chem Soc; 2003 Sep; 125(35):10725-8. PubMed ID: 12940758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate effect on supramolecular self-assembly: from semiconductors to metals.
    Suzuki T; Lutz T; Payer D; Lin N; Tait SL; Costantini G; Kern K
    Phys Chem Chem Phys; 2009 Aug; 11(30):6498-504. PubMed ID: 19809682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent self-assembly of NC-Ph5-CN molecules on Cu(111).
    Pivetta M; Pacchioni GE; Fernandes E; Brune H
    J Chem Phys; 2015 Mar; 142(10):101928. PubMed ID: 25770517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-A square-grid coordination network.
    Ohmura T; Usuki A; Fukumori K; Ohta T; Ito M; Tatsumi K
    Inorg Chem; 2006 Oct; 45(20):7988-90. PubMed ID: 16999390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of meta-aminobenzoate on Cu(110).
    Rabot C; Hori M; Katano S; Kim Y; Kawai M
    Langmuir; 2009 May; 25(10):5504-8. PubMed ID: 19371044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C60-pentacene network formation by 2-D co-crystallization.
    Jin W; Dougherty DB; Cullen WG; Robey S; Reutt-Robey JE
    Langmuir; 2009 Sep; 25(17):9857-62. PubMed ID: 19456180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.