BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19256501)

  • 1. Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
    Wan H; Ahman M; Holmén AG
    J Med Chem; 2009 Mar; 52(6):1693-700. PubMed ID: 19256501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How well do lipophilicity parameters, MEEKC microemulsion capacity factor, and plasma protein binding predict CNS tissue binding?
    Zamek-Gliszczynski MJ; Sprague KE; Espada A; Raub TJ; Morton SM; Manro JR; Molina-Martin M
    J Pharm Sci; 2012 May; 101(5):1932-40. PubMed ID: 22344827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microemulsion electrokinetic chromatography hyphenated to atmospheric pressure photoionization mass spectrometry.
    Schappler J; Guillarme D; Rudaz S; Veuthey JL
    Electrophoresis; 2008 Jan; 29(1):11-9. PubMed ID: 18161697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept.
    Reichel A
    Chem Biodivers; 2009 Nov; 6(11):2030-49. PubMed ID: 19937839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery.
    Wan H; Rehngren M; Giordanetto F; Bergström F; Tunek A
    J Med Chem; 2007 Sep; 50(19):4606-15. PubMed ID: 17725338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting blood-brain barrier penetration of drugs by microemulsion liquid chromatography with corrected retention factor.
    Liu J; Sun J; Sui X; Wang Y; Hou Y; He Z
    J Chromatogr A; 2008 Jul; 1198-1199():164-72. PubMed ID: 18541248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening of protein binding by equilibrium dialysis combined with liquid chromatography and mass spectrometry.
    Wan H; Rehngren M
    J Chromatogr A; 2006 Jan; 1102(1-2):125-34. PubMed ID: 16266710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of octanol-water partition coefficients for carbonate esters and other small organic molecules by microemulsion electrokinetic chromatography.
    Østergaard J; Hansen SH; Larsen C; Schou C; Heegaard NH
    Electrophoresis; 2003 Mar; 24(6):1038-46. PubMed ID: 12658693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative structure-activity approach for lipophilicity estimation of antitumor complexes of different metals using microemulsion electrokinetic chromatography.
    Foteeva LS; Trofimov DA; Kuznetsova OV; Kowol CR; Arion VB; Keppler BK; Timerbaev AR
    J Pharm Biomed Anal; 2011 Jun; 55(3):409-13. PubMed ID: 21382684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion-selective exhaustive injection-sweeping microemulsion electrokinetic chromatography.
    Huang HY; Lien WC; Huang IY
    Electrophoresis; 2006 Aug; 27(16):3202-9. PubMed ID: 16850505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice.
    Maurer TS; Debartolo DB; Tess DA; Scott DO
    Drug Metab Dispos; 2005 Jan; 33(1):175-81. PubMed ID: 15502010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics.
    Shen DD; Artru AA; Adkison KK
    Adv Drug Deliv Rev; 2004 Oct; 56(12):1825-57. PubMed ID: 15381336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method.
    Longhi R; Corbioli S; Fontana S; Vinco F; Braggio S; Helmdach L; Schiller J; Boriss H
    Drug Metab Dispos; 2011 Feb; 39(2):312-21. PubMed ID: 21071520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of microemulsion electrokinetic chromatography for measuring octanol-water partition coefficients.
    Xia Z; Jiang X; Mu X; Chen H
    Electrophoresis; 2008 Feb; 29(4):835-42. PubMed ID: 18203250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery.
    Wan H; Holmén AG
    Comb Chem High Throughput Screen; 2009 Mar; 12(3):315-29. PubMed ID: 19275537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing brain free fraction in early drug discovery.
    Read KD; Braggio S
    Expert Opin Drug Metab Toxicol; 2010 Mar; 6(3):337-44. PubMed ID: 20102287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PK/PD assessment in CNS drug discovery: Prediction of CSF concentration in rodents for P-glycoprotein substrates and application to in vivo potency estimation.
    Caruso A; Alvarez-Sánchez R; Hillebrecht A; Poirier A; Schuler F; Lavé T; Funk C; Belli S
    Biochem Pharmacol; 2013 Jun; 85(11):1684-99. PubMed ID: 23454189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent applications of microemulsion electrokinetic chromatography.
    Huie CW
    Electrophoresis; 2006 Jan; 27(1):60-75. PubMed ID: 16315183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction.
    Summerfield SG; Read K; Begley DJ; Obradovic T; Hidalgo IJ; Coggon S; Lewis AV; Porter RA; Jeffrey P
    J Pharmacol Exp Ther; 2007 Jul; 322(1):205-13. PubMed ID: 17405866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of biopartitioning micellar chromatography as an in vitro technique for predicting drug penetration across the blood-brain barrier.
    Escuder-Gilabert L; Molero-Monfort M; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 807(2):193-201. PubMed ID: 15203029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.