These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 19256544)
41. Determination of local effects for chloroaluminate ionic liquids on Diels-Alder reactions. Acevedo O J Mol Graph Model; 2009 Sep; 28(2):95-101. PubMed ID: 19419891 [TBL] [Abstract][Full Text] [Related]
42. New findings on the Diels-Alder reactions. An analysis based on the bonding evolution theory. Berski S; Andrés J; Silvi B; Domingo LR J Phys Chem A; 2006 Dec; 110(51):13939-47. PubMed ID: 17181354 [TBL] [Abstract][Full Text] [Related]
44. First-principles investigations on the functionalization of chiral and non-chiral carbon nanotubes by Diels-Alder cycloaddition reactions. Mercuri F; Sgamellotti A Phys Chem Chem Phys; 2009 Jan; 11(3):563-7. PubMed ID: 19283274 [TBL] [Abstract][Full Text] [Related]
45. Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study. Hernández-Mancera JP; Núñez-Zarur F; Vivas-Reyes R ChemistryOpen; 2020 Jul; 9(7):748-761. PubMed ID: 32670739 [TBL] [Abstract][Full Text] [Related]
46. Rolf Huisgen's Classic Studies of Cyclic Triene Diels-Alder Reactions Elaborated by Modern Computational Analysis. Chen PP; Seeman JI; Houk KN Angew Chem Int Ed Engl; 2020 Jul; 59(30):12506-12519. PubMed ID: 32369676 [TBL] [Abstract][Full Text] [Related]
47. Diels-Alder reaction between cyclopentadiene and C60: an analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. Osuna S; Morera J; Cases M; Morokuma K; Solà M J Phys Chem A; 2009 Sep; 113(35):9721-6. PubMed ID: 19663407 [TBL] [Abstract][Full Text] [Related]
48. Carbohydrate-aromatic pi interactions: a test of density functionals and the DFT-D method. Raju RK; Ramraj A; Hillier IH; Vincent MA; Burton NA Phys Chem Chem Phys; 2009 May; 11(18):3411-6. PubMed ID: 19421542 [TBL] [Abstract][Full Text] [Related]
49. Reactivity for the Diels-Alder reaction of cumulenes: a distortion-interaction analysis along the reaction pathway. Liu S; Lei Y; Qi X; Lan Y J Phys Chem A; 2014 Apr; 118(14):2638-45. PubMed ID: 24576078 [TBL] [Abstract][Full Text] [Related]
50. The change of aromaticity along a Diels-Alder reaction path. Corminboeuf C; Heine T; Weber J Org Lett; 2003 Apr; 5(7):1127-30. PubMed ID: 12659590 [TBL] [Abstract][Full Text] [Related]
51. Characteristics of the two frontier orbital interactions in the Diels-Alder cycloaddition. Spino C; Rezaei H; Dory YL J Org Chem; 2004 Feb; 69(3):757-64. PubMed ID: 14750802 [TBL] [Abstract][Full Text] [Related]
52. Transition structures, energetics, and secondary kinetic isotope effects for cope rearrangements of cis-1,2-divinylcyclobutane and cis-1,2-divinylcyclopropane: a DFT study. Ozkan I; Zora M J Org Chem; 2003 Dec; 68(25):9635-42. PubMed ID: 14656088 [TBL] [Abstract][Full Text] [Related]
53. Understanding the mechanism of non-polar Diels-Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Domingo LR; Chamorro E; Pérez P Org Biomol Chem; 2010 Dec; 8(24):5495-504. PubMed ID: 20967366 [TBL] [Abstract][Full Text] [Related]
54. Density functional study of methyl chemisorption on polycyclic aromatic hydrocarbons. Unterreiner BV; Carissan Y; Klopper W Chemphyschem; 2006 Jun; 7(6):1311-21. PubMed ID: 16671151 [TBL] [Abstract][Full Text] [Related]
55. Thermochemistry and kinetics of hydrogen abstraction by methyl radical from polycyclic aromatic hydrocarbons. Hemelsoet K; Van Speybroeck V; Moran D; Marin GB; Radom L; Waroquier M J Phys Chem A; 2006 Dec; 110(50):13624-31. PubMed ID: 17165891 [TBL] [Abstract][Full Text] [Related]
56. Impact of Lewis acids on Diels-Alder reaction reactivity: a conceptual density functional theory study. Xia Y; Yin D; Rong C; Xu Q; Yin D; Liu S J Phys Chem A; 2008 Oct; 112(40):9970-7. PubMed ID: 18785697 [TBL] [Abstract][Full Text] [Related]
57. Experimental Diels-Alder reactivities of cycloalkenones and cyclic dienes explained through transition-state distortion energies. Paton RS; Kim S; Ross AG; Danishefsky SJ; Houk KN Angew Chem Int Ed Engl; 2011 Oct; 50(44):10366-8. PubMed ID: 21910195 [No Abstract] [Full Text] [Related]
58. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes. Ess DH; Jones GO; Houk KN Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405 [TBL] [Abstract][Full Text] [Related]
59. A quantum chemistry study of Diels-Alder dimerizations in benzene and anthracene. Quenneville J; Germann TC J Chem Phys; 2009 Jul; 131(2):024313. PubMed ID: 19603997 [TBL] [Abstract][Full Text] [Related]
60. Concerted [4 + 2] and Stepwise (2 + 2) Cycloadditions of Tetrafluoroethylene with Butadiene: DFT and DLPNO-UCCSD(T) Explorations. Svatunek D; Pemberton RP; Mackey JL; Liu P; Houk KN J Org Chem; 2020 Mar; 85(5):3858-3864. PubMed ID: 32031811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]