These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19256565)

  • 1. Atomically efficient synthesis of self-assembled monodisperse and ultrathin lanthanide oxychloride nanoplates.
    Du YP; Zhang YW; Sun LD; Yan CH
    J Am Chem Soc; 2009 Mar; 131(9):3162-3. PubMed ID: 19256565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor.
    Zhang YW; Sun X; Si R; You LP; Yan CH
    J Am Chem Soc; 2005 Mar; 127(10):3260-1. PubMed ID: 15755126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly luminescent self-organized sub-2-nm EuOF nanowires.
    Du YP; Zhang YW; Yan ZG; Sun LD; Yan CH
    J Am Chem Soc; 2009 Nov; 131(45):16364-5. PubMed ID: 19902976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase.
    Sun X; Zhang YW; Du YP; Yan ZG; Si R; You LP; Yan CH
    Chemistry; 2007; 13(8):2320-32. PubMed ID: 17163562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse lanthanide oxysulfide nanocrystals.
    Zhao F; Yuan M; Zhang W; Gao S
    J Am Chem Soc; 2006 Sep; 128(36):11758-9. PubMed ID: 16953606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.
    Jiang LP; Xu S; Zhu JM; Zhang JR; Zhu JJ; Chen HY
    Inorg Chem; 2004 Sep; 43(19):5877-83. PubMed ID: 15360236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations.
    Ding Y; Gu J; Ke J; Zhang YW; Yan CH
    Angew Chem Int Ed Engl; 2011 Dec; 50(51):12330-4. PubMed ID: 22021111
    [No Abstract]   [Full Text] [Related]  

  • 8. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors.
    Du YP; Zhang YW; Sun LD; Yan CH
    Dalton Trans; 2009 Oct; (40):8574-81. PubMed ID: 19809734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of In2S3 nanoplates and their self-assembly into superlattices.
    Zhong H; Ye M; Zhou Y; Yang C; Li Y
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4346-52. PubMed ID: 18283813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of "strong" columnar Cu2-xSe superstructures assisted by inorganic ligands.
    Shen H; Niu J; Li X; Wang H; Xing M; Chen X; Li LS
    Nanoscale; 2012 Apr; 4(8):2741-7. PubMed ID: 22402728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of CeO2 nanoplates and nanorods by [100] oriented growth.
    Lin HL; Wu CY; Chiang RK
    J Colloid Interface Sci; 2010 Jan; 341(1):12-7. PubMed ID: 19833346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties.
    Zou XX; Li GD; Wang PP; Su J; Zhao J; Zhou LJ; Wang YN; Chen JS
    Dalton Trans; 2012 Aug; 41(32):9773-80. PubMed ID: 22767327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals.
    Li S; Wang H; Xu W; Si H; Tao X; Lou S; Du Z; Li LS
    J Colloid Interface Sci; 2009 Feb; 330(2):483-7. PubMed ID: 19007936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges.
    Chu HC; Kuo CH; Huang MH
    Inorg Chem; 2006 Jan; 45(2):808-13. PubMed ID: 16411718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution.
    Yan Y; Xia B; Ge X; Liu Z; Wang JY; Wang X
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12794-8. PubMed ID: 24299040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From nanorods to atomically thin wires of anatase TiO(2): nonhydrolytic synthesis and characterization.
    Liu C; Sun H; Yang S
    Chemistry; 2010 Apr; 16(14):4381-93. PubMed ID: 20209518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates.
    Park KH; Jang K; Son SU
    Angew Chem Int Ed Engl; 2006 Jul; 45(28):4608-12. PubMed ID: 16791893
    [No Abstract]   [Full Text] [Related]  

  • 19. Confined self-assembly approach to produce ultrathin carbon nanofibers.
    Zhang W; Cui J; Tao CA; Lin C; Wu Y; Li G
    Langmuir; 2009 Jul; 25(14):8235-9. PubMed ID: 19371049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient preparation of silver nanoplates assisted by non-polar solvents.
    Huang L; Zhai Y; Dong S; Wang J
    J Colloid Interface Sci; 2009 Mar; 331(2):384-8. PubMed ID: 19136119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.