These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 19256589)
1. Ideal dipole approximation fails to predict electronic coupling and energy transfer between semiconducting single-wall carbon nanotubes. Wong CY; Curutchet C; Tretiak S; Scholes GD J Chem Phys; 2009 Feb; 130(8):081104. PubMed ID: 19256589 [TBL] [Abstract][Full Text] [Related]
2. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes. Swathi RS; Sebastian KL J Chem Phys; 2010 Mar; 132(10):104502. PubMed ID: 20232966 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study. Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
5. Beyond Förster resonance energy transfer in biological and nanoscale systems. Beljonne D; Curutchet C; Scholes GD; Silbey RJ J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333 [TBL] [Abstract][Full Text] [Related]
6. Excitonic coupling in polythiophenes: comparison of different calculation methods. Beenken WJ; Pullerits T J Chem Phys; 2004 Feb; 120(5):2490-5. PubMed ID: 15268391 [TBL] [Abstract][Full Text] [Related]
7. Selective enhancement of carbon nanotube photoluminescence by resonant energy transfer. Ahmad A; Kern K; Balasubramanian K Chemphyschem; 2009 Apr; 10(6):905-9. PubMed ID: 19308969 [TBL] [Abstract][Full Text] [Related]
8. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. Madjet ME; Abdurahman A; Renger T J Phys Chem B; 2006 Aug; 110(34):17268-81. PubMed ID: 16928026 [TBL] [Abstract][Full Text] [Related]
9. Does Förster theory predict the rate of electronic energy transfer for a model dyad at low temperature? Curutchet C; Mennucci B; Scholes GD; Beljonne D J Phys Chem B; 2008 Mar; 112(12):3759-66. PubMed ID: 18318527 [TBL] [Abstract][Full Text] [Related]
10. Violation of the condon approximation in semiconducting carbon nanotubes. Duque JG; Chen H; Swan AK; Shreve AP; Kilina S; Tretiak S; Tu X; Zheng M; Doorn SK ACS Nano; 2011 Jun; 5(6):5233-41. PubMed ID: 21612303 [TBL] [Abstract][Full Text] [Related]
11. Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies. Fückel B; Köhn A; Harding ME; Diezemann G; Hinze G; Basché T; Gauss J J Chem Phys; 2008 Feb; 128(7):074505. PubMed ID: 18298155 [TBL] [Abstract][Full Text] [Related]
12. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. Vaitheeswaran S; Rasaiah JC; Hummer G J Chem Phys; 2004 Oct; 121(16):7955-65. PubMed ID: 15485258 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation. Barone V; Scuseria GE J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916 [TBL] [Abstract][Full Text] [Related]
14. [Effects of topological defects on the electronic structure and optical spectrum of single-wall carbon nanotubes]. Xie F; Hu HF; We JW; Zeng H; Peng P Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1267-70. PubMed ID: 17944391 [TBL] [Abstract][Full Text] [Related]
15. Energy transfer in the nanostar: the role of coulombic coupling and dynamics. Ortiz W; Krueger BP; Kleiman VD; Krause JL; Roitberg AE J Phys Chem B; 2005 Jun; 109(23):11512-9. PubMed ID: 16852410 [TBL] [Abstract][Full Text] [Related]
16. When double-wall carbon nanotubes can become metallic or semiconducting. Moradian R; Azadi S; Refii-Tabar H J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955 [TBL] [Abstract][Full Text] [Related]
17. Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes. Han SP; Goddard WA J Phys Chem B; 2009 May; 113(20):7199-204. PubMed ID: 19388682 [TBL] [Abstract][Full Text] [Related]
18. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. Kato T; Hatakeyama R J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918 [TBL] [Abstract][Full Text] [Related]
19. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation. Didraga C; Malyshev VA; Knoester J J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872 [TBL] [Abstract][Full Text] [Related]
20. Calculations of the exciton coupling elements between the DNA bases using the transition density cube method. Czader A; Bittner ER J Chem Phys; 2008 Jan; 128(3):035101. PubMed ID: 18205523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]