These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19256616)

  • 1. Effects of external global noise on the catalytic CO oxidation on Pt(110).
    Bodega PS; Alonso S; Rotermund HH
    J Chem Phys; 2009 Feb; 130(8):084704. PubMed ID: 19256616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External noise-induced phenomena in CO oxidation on single crystal surfaces.
    Pineda M; Toral R
    J Chem Phys; 2009 Mar; 130(12):124704. PubMed ID: 19334869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of spatiotemporal chaos in the oscillatory CO oxidation on Pt(110) by focused laser light.
    Punckt C; Stich M; Beta C; Rotermund HH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046222. PubMed ID: 18517725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal noise stochastic resonance in NO reduction by CO on platinum surfaces.
    Gong Y; Hou Z; Xin H
    J Phys Chem A; 2005 Mar; 109(12):2741-5. PubMed ID: 16833585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of stochastic oscillations by colored noise or internal noise in NO reduction by CO on small platinum surfaces.
    Gong Y; Xie Y; Xu B; Ma X
    J Chem Phys; 2008 Mar; 128(12):124707. PubMed ID: 18376960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110).
    Kim M; Bertram M; Pollmann M; von Oertzen A; Mikhailov AS; Rotermund HH; Ertl G
    Science; 2001 May; 292(5520):1357-60. PubMed ID: 11359007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities.
    Bar M; Hildebrand M; Eiswirth M; Falcke M; Engel H; Neufeld M
    Chaos; 1994 Sep; 4(3):499-508. PubMed ID: 12780126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern formation in 4:1 resonance of the periodically forced CO oxidation on Pt(110).
    Kaira P; Bodega PS; Punckt C; Rotermund HH; Krefting D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046106. PubMed ID: 18517689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the effect of surface-oxide formation on bistability in CO oxidation on Pt-group metals.
    Zhdanov VP
    J Chem Phys; 2007 Feb; 126(7):074706. PubMed ID: 17328626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of spatiotemporal chaos in catalytic CO oxidation by laser-induced pacemakers.
    Stich M; Punckt C; Beta C; Rotermund HH
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):419-26. PubMed ID: 17673409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the effects of internal noise for rate oscillations during CO oxidation on platinum(110) surfaces.
    Juan M; Hou Z; Xin H
    J Phys Chem A; 2007 Nov; 111(45):11500-5. PubMed ID: 17944443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures.
    Anghel AT; Hoyle RB; Irurzun IM; Proctor MR; King DA
    J Chem Phys; 2007 Oct; 127(16):164711. PubMed ID: 17979375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient induced spiral drift in heterogeneous excitable media.
    Sadeghi P; Rotermund HH
    Chaos; 2011 Mar; 21(1):013125. PubMed ID: 21456839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of internal noise for rate oscillations during CO oxidation on platinum surfaces.
    Hou Z; Rao T; Xin H
    J Chem Phys; 2005 Apr; 122(13):134708. PubMed ID: 15847490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Boundaries on Pattern Formation: Catalytic Oxidation of CO on Platinum.
    Graham MD; Kevrekidis IG; Asakura K; Lauterbach J; Krischer K; Rotermund HH; Ertl G
    Science; 1994 Apr; 264(5155):80-2. PubMed ID: 17778139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling turbulence in a surface chemical reaction by time-delay autosynchronization.
    Beta C; Bertram M; Mikhailov AS; Rotermund HH; Ertl G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046224. PubMed ID: 12786477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.
    Qiao C; Wu Y; Lu X; Wang C; Ouyang Q; Wang H
    Chaos; 2008 Jun; 18(2):026109. PubMed ID: 18601511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External noise imposed on the reaction-diffusion system CO+O2-->CO2 on Ir(111) surfaces: experiment and theory.
    Hayase Y; Wehner S; Küppers J; Brand HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021609. PubMed ID: 14995460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodical forcing for the control of chaos in a chemical reaction.
    Córdoba A; Lemos MC; Jiménez-Morales F
    J Chem Phys; 2006 Jan; 124(1):14707. PubMed ID: 16409051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.