BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19256697)

  • 21. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential oblique angle spectroscopy of the oral epithelium.
    Hattery D; Hattery B; Chernomordik V; Smith P; Loew M; Mulshine J; Gandjbakhche A
    J Biomed Opt; 2004; 9(5):951-60. PubMed ID: 15447016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based spectroscopic analysis of the oral cavity: impact of anatomy.
    McGee S; Mirkovic J; Mardirossian V; Elackattu A; Yu CC; Kabani S; Gallagher G; Pistey R; Galindo L; Badizadegan K; Wang Z; Dasari R; Feld MS; Grillone G
    J Biomed Opt; 2008; 13(6):064034. PubMed ID: 19123680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Appl Opt; 2008 Jun; 47(17):3152-7. PubMed ID: 18545288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy.
    Schwarz RA; Gao W; Redden Weber C; Kurachi C; Lee JJ; El-Naggar AK; Richards-Kortum R; Gillenwater AM
    Cancer; 2009 Apr; 115(8):1669-79. PubMed ID: 19170229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Sensitive Fibre Optic Probe for Autofluorescence Spectroscopy of Oral Tongue Cancer: Monte Carlo Simulation Study.
    Shhadeh H; Bachir W; Karraz G
    Biomed Res Int; 2020; 2020():1936570. PubMed ID: 32337228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical pathology using oral tissue fluorescence spectra: classification by principal component analysis and k-means nearest neighbor analysis.
    Kamath SD; Mahato KK
    J Biomed Opt; 2007; 12(1):014028. PubMed ID: 17343503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue.
    Swartling J; Svensson J; Bengtsson D; Terike K; Andersson-Engels S
    Appl Opt; 2005 Apr; 44(10):1934-41. PubMed ID: 15813529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.
    Pfefer TJ; Wang Q; Drezek RA
    Comput Methods Programs Biomed; 2011 Nov; 104(2):161-7. PubMed ID: 21111507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
    Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM
    Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model based and empirical spectral analysis for the diagnosis of breast cancer.
    Zhu C; Breslin TM; Harter J; Ramanujam N
    Opt Express; 2008 Sep; 16(19):14961-78. PubMed ID: 18795033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear pattern recognition for laser-induced fluorescence diagnosis of cancer.
    Majumder SK; Ghosh N; Kataria S; Gupta PK
    Lasers Surg Med; 2003; 33(1):48-56. PubMed ID: 12866121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.