BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19256699)

  • 1. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance.
    Amouroux M; Díaz-Ayil G; Blondel WC; Bourg-Heckly G; Leroux A; Guillemin F
    J Biomed Opt; 2009; 14(1):014011. PubMed ID: 19256699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern recognition of multiple excitation autofluorescence spectra for colon tissue classification.
    Liu L; Nie Y; Lin L; Li W; Huang Z; Xie S; Li B
    Photodiagnosis Photodyn Ther; 2013 May; 10(2):111-9. PubMed ID: 23769276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy.
    Abdat F; Amouroux M; Guermeur Y; Blondel W
    Opt Express; 2012 Jan; 20(1):228-44. PubMed ID: 22274346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    J Biomed Opt; 2004; 9(5):940-50. PubMed ID: 15447015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical pathology using oral tissue fluorescence spectra: classification by principal component analysis and k-means nearest neighbor analysis.
    Kamath SD; Mahato KK
    J Biomed Opt; 2007; 12(1):014028. PubMed ID: 17343503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared autofluorescence spectroscopy for in vivo identification of hyperplastic and adenomatous polyps in the colon.
    Shao X; Zheng W; Huang Z
    Biosens Bioelectron; 2011 Dec; 30(1):118-22. PubMed ID: 21959224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues.
    Luo XJ; Zhang B; Li JG; Luo XA; Yang LF
    Z Med Phys; 2012 Feb; 22(1):40-7. PubMed ID: 22112637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer.
    Chang SK; Mirabal YN; Atkinson EN; Cox D; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2005; 10(2):024031. PubMed ID: 15910104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of in vivo autofluorescence spectra using support vector machines.
    Lin W; Yuan X; Yuen P; Wei WI; Sham J; Shi P; Qu J
    J Biomed Opt; 2004; 9(1):180-6. PubMed ID: 14715071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
    Shao X; Zheng W; Huang Z
    J Biomed Opt; 2011 Jun; 16(6):067005. PubMed ID: 21721826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of early stage nasopharyngeal carcinoma using ultraviolet autofluorescence excitation-emission matrix spectroscopy and parallel factor analysis.
    Lin B; Bergholt MS; Lau DP; Huang Z
    Analyst; 2011 Oct; 136(19):3896-903. PubMed ID: 21814699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence.
    Uehlinger P; Gabrecht T; Glanzmann T; Ballini JP; Radu A; Andrejevic S; Monnier P; Wagnières G
    J Biomed Opt; 2009; 14(2):024011. PubMed ID: 19405741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence spectroscopy for the detection of tongue carcinoma--validation in an animal model.
    Kurachi C; Fontana CR; Rosa LE; Bagnato VS
    J Biomed Opt; 2008; 13(3):034018. PubMed ID: 18601563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.
    Volynskaya Z; Haka AS; Bechtel KL; Fitzmaurice M; Shenk R; Wang N; Nazemi J; Dasari RR; Feld MS
    J Biomed Opt; 2008; 13(2):024012. PubMed ID: 18465975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples.
    Palmer GM; Marshek CL; Vrotsos KM; Ramanujam N
    Lasers Surg Med; 2002; 30(3):191-200. PubMed ID: 11891738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral features selection and classification for bimodal optical spectroscopy applied to bladder cancer in vivo diagnosis.
    Péry E; Blondel WC; Tindel S; Ghribi M; Leroux A; Guillemin F
    IEEE Trans Biomed Eng; 2014 Jan; 61(1):207-16. PubMed ID: 21216703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of data fusion to increase the efficiency of classification of precancerous skin states using in vivo bimodal spectroscopic technique.
    Kupriyanov V; Blondel W; Daul C; Amouroux M; Kistenev Y
    J Biophotonics; 2023 Jul; 16(7):e202300035. PubMed ID: 37095684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.