These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 19256846)

  • 1. Role of surfactant molecules in magnetic fluid: comparison of Monte Carlo simulation and electron magnetic resonance.
    Castro LL; Gonçalves GR; Neto KS; Morais PC; Bakuzis AF; Miotto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061507. PubMed ID: 19256846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chain formation and aging process in biocompatible polydisperse ferrofluids: experimental investigation and Monte Carlo simulations.
    Bakuzis AF; Branquinho LC; e Castro LL; e Eloi MT; Miotto R
    Adv Colloid Interface Sci; 2013 May; 191-192():1-21. PubMed ID: 23360743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization, nanoparticle self-organization, and Monte Carlo simulation of magnetoliposomes.
    Salvador MA; Costa AS; Gaeti M; Mendes LP; Lima EM; Bakuzis AF; Miotto R
    Phys Rev E; 2016 Feb; 93(2):022609. PubMed ID: 26986379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. van der Waals interaction between internal aqueous droplets and the external aqueous phase in double emulsions.
    Wen L; Cheng J; Zou H; Zhang L; Chen J; Papadopoulos KD
    Langmuir; 2004 Sep; 20(19):8391-7. PubMed ID: 15350119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective interaction between charged nanoparticles and DNA.
    Paillusson F; Dahirel V; Jardat M; Victor JM; Barbi M
    Phys Chem Chem Phys; 2011 Jul; 13(27):12603-13. PubMed ID: 21670822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic Attraction: A New Mechanism of Nanoparticle Aggregation.
    Lysenko SN; Astaf'eva SA; Kornilitsina EV; Yakusheva DE; Morozov KI
    Langmuir; 2022 Nov; 38(46):14313-14325. PubMed ID: 36351051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopy on surfacted ferrofluids in a magnetic field.
    Weber JE; Goñi AR; Pusiol DJ; Thomsen C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021407. PubMed ID: 12241178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force.
    Chesters AK; Bazhlekov IB
    J Colloid Interface Sci; 2000 Oct; 230(2):229-243. PubMed ID: 11017729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation.
    Noskov S; Scherer C; Maskos M
    J Chromatogr A; 2013 Jan; 1274():151-8. PubMed ID: 23273632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.
    Poorgholami-Bejarpasi N; Hashemianzadeh M; Mousavi-Khoshdel SM; Sohrabi B
    Langmuir; 2010 Sep; 26(17):13786-96. PubMed ID: 20672817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic effects between magnetite nanoparticles and a hydrophobic surfactant in highly concentrated Pickering emulsions.
    Vílchez A; Rodríguez-Abreu C; Menner A; Bismarck A; Esquena J
    Langmuir; 2014 May; 30(18):5064-74. PubMed ID: 24738961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface modification on magnetization of iron oxide nanoparticle colloids.
    Yuan Y; Rende D; Altan CL; Bucak S; Ozisik R; Borca-Tasciuc DA
    Langmuir; 2012 Sep; 28(36):13051-9. PubMed ID: 22889238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering.
    Lu C; Akey AJ; Dahlman CJ; Zhang D; Herman IP
    J Am Chem Soc; 2012 Nov; 134(45):18732-8. PubMed ID: 23034055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Criteria ruling particle agglomeration.
    Vollath D
    Beilstein J Nanotechnol; 2021; 12():1093-1100. PubMed ID: 34650901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.