These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 19256865)
1. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Lushnikov PM; Chen N; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061904. PubMed ID: 19256865 [TBL] [Abstract][Full Text] [Related]
2. Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Alber M; Chen N; Lushnikov PM; Newman SA Phys Rev Lett; 2007 Oct; 99(16):168102. PubMed ID: 17995299 [TBL] [Abstract][Full Text] [Related]
3. Modeling tumor cell migration: From microscopic to macroscopic models. Deroulers C; Aubert M; Badoual M; Grammaticos B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031917. PubMed ID: 19391981 [TBL] [Abstract][Full Text] [Related]
4. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Alber M; Chen N; Glimm T; Lushnikov PM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051901. PubMed ID: 16802961 [TBL] [Abstract][Full Text] [Related]
5. Strong-coupling dynamics of a multicellular chemotactic system. Grima R Phys Rev Lett; 2005 Sep; 95(12):128103. PubMed ID: 16197116 [TBL] [Abstract][Full Text] [Related]
6. Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics. D'Orsogna MR; Suchard MA; Chou T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021925. PubMed ID: 14525024 [TBL] [Abstract][Full Text] [Related]
7. Stochastic models for cell motion and taxis. Ionides EL; Fang KS; Isseroff RR; Oster GF J Math Biol; 2004 Jan; 48(1):23-37. PubMed ID: 14685770 [TBL] [Abstract][Full Text] [Related]
8. Tactile interactions lead to coherent motion and enhanced chemotaxis of migrating cells. Coburn L; Cerone L; Torney C; Couzin ID; Neufeld Z Phys Biol; 2013 Aug; 10(4):046002. PubMed ID: 23752100 [TBL] [Abstract][Full Text] [Related]
9. Many-body theory of chemotactic cell-cell interactions. Newman TJ; Grima R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051916. PubMed ID: 15600665 [TBL] [Abstract][Full Text] [Related]
10. Macroscopic model of self-propelled bacteria swarming with regular reversals. Gejji R; Lushnikov PM; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021903. PubMed ID: 22463240 [TBL] [Abstract][Full Text] [Related]
11. Fractional chemotaxis diffusion equations. Langlands TA; Henry BI Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051102. PubMed ID: 20866180 [TBL] [Abstract][Full Text] [Related]
12. Travelling waves in hybrid chemotaxis models. Franz B; Xue C; Painter KJ; Erban R Bull Math Biol; 2014 Feb; 76(2):377-400. PubMed ID: 24347253 [TBL] [Abstract][Full Text] [Related]
13. Using cell potential energy to model the dynamics of adhesive biological cells. Turner S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041903. PubMed ID: 15903697 [TBL] [Abstract][Full Text] [Related]
14. Inertia of amoebic cell locomotion as an emergent collective property of the cellular dynamics. Nishimura SI; Sasai M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):010902. PubMed ID: 15697573 [TBL] [Abstract][Full Text] [Related]
15. From microscopic to macroscopic descriptions of cell migration on growing domains. Baker RE; Yates CA; Erban R Bull Math Biol; 2010 Apr; 72(3):719-62. PubMed ID: 19862577 [TBL] [Abstract][Full Text] [Related]
16. Collective motion of dimers. Penington CJ; Korvasová K; Hughes BD; Landman KA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051909. PubMed ID: 23214816 [TBL] [Abstract][Full Text] [Related]
17. Interacting motile agents: taking a mean-field approach beyond monomers and nearest-neighbor steps. Penington CJ; Hughes BD; Landman KA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032714. PubMed ID: 24730881 [TBL] [Abstract][Full Text] [Related]
18. Stochastic control of spontaneous signal generation for gradient sensing in chemotaxis. Naoki H; Sakumura Y; Ishii S J Theor Biol; 2008 Nov; 255(2):259-66. PubMed ID: 18789338 [TBL] [Abstract][Full Text] [Related]
19. Steadily propagating waves of a chemotaxis model. Li T; Wang ZA Math Biosci; 2012 Dec; 240(2):161-8. PubMed ID: 22841924 [TBL] [Abstract][Full Text] [Related]
20. Exclusion processes on a growing domain. Binder BJ; Landman KA J Theor Biol; 2009 Aug; 259(3):541-51. PubMed ID: 19427868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]