These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19257011)

  • 1. Coherent exciton transport and trapping on long-range interacting cycles.
    Xu XP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011117. PubMed ID: 19257011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-time quantum walks on one-dimensional regular networks.
    Xu XP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061127. PubMed ID: 18643237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent transport on Apollonian networks and continuous-time quantum walks.
    Xu XP; Li W; Liu F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):052103. PubMed ID: 19113175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent exciton transport in dendrimers and continuous-time quantum walks.
    Mülken O; Bierbaum V; Blumen A
    J Chem Phys; 2006 Mar; 124(12):124905. PubMed ID: 16599723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum transport on small-world networks: a continuous-time quantum walk approach.
    Mülken O; Pernice V; Blumen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051125. PubMed ID: 18233641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival probabilities in coherent exciton transfer with trapping.
    Mülken O; Blumen A; Amthor T; Giese C; Reetz-Lamour M; Weidemüller M
    Phys Rev Lett; 2007 Aug; 99(9):090601. PubMed ID: 17930996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.
    Riascos AP; Mateos JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052814. PubMed ID: 26651751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The parasite capacity of the host population].
    Kozminskiĭ EV
    Parazitologiia; 2002; 36(1):48-59. PubMed ID: 11965643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Work and efficiency of quantum Otto cycles in power-law trapping potentials.
    Zheng Y; Poletti D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012145. PubMed ID: 25122289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size of quantum networks.
    Bianconi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056119. PubMed ID: 12786232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical mechanics of the quantum K -satisfiability problem.
    Knysh S; Smelyanskiy VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061128. PubMed ID: 19256823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of growing random networks.
    Krapivsky PL; Redner S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066123. PubMed ID: 11415189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport behavior of coupled continuous-time random walks.
    Dentz M; Scher H; Holder D; Berkowitz B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041110. PubMed ID: 18999382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization transition of biased random walks on random networks.
    Sood V; Grassberger P
    Phys Rev Lett; 2007 Aug; 99(9):098701. PubMed ID: 17931043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of continuous-time quantum walks on Sierpinski fractals.
    Darázs Z; Anishchenko A; Kiss T; Blumen A; Mülken O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032113. PubMed ID: 25314401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-time quantum walk on an extended star graph: Trapping and superradiance transition.
    Yalouz S; Pouthier V
    Phys Rev E; 2018 Feb; 97(2-1):022304. PubMed ID: 29548191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of message transmission using biased random walks in complex networks in the presence of traps.
    Skarpalezos L; Kittas A; Argyrakis P; Cohen R; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012817. PubMed ID: 25679667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of quantum and classical transport on graphs.
    Mülken O; Blumen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066117. PubMed ID: 16906924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transitions in a network with a range-dependent connection probability.
    Sen P; Banerjee K; Biswas T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):037102. PubMed ID: 12366298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.