These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 19257022)
1. Distribution functions in percolation problems. Janssen HK; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011128. PubMed ID: 19257022 [TBL] [Abstract][Full Text] [Related]
2. Logarithmic corrections to scaling in critical percolation and random resistor networks. Stenull O; Janssen HK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036129. PubMed ID: 14524854 [TBL] [Abstract][Full Text] [Related]
3. Linear polymers in disordered media: the shortest, the longest, and the mean self-avoiding walk on percolation clusters. Janssen HK; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011123. PubMed ID: 22400528 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters. Stenull O; Janssen HK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016135. PubMed ID: 11461359 [TBL] [Abstract][Full Text] [Related]
5. Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution. Daryaei E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022129. PubMed ID: 25215710 [TBL] [Abstract][Full Text] [Related]
6. Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters. Janssen HK; Stenull O Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt A):4821-34. PubMed ID: 11031523 [TBL] [Abstract][Full Text] [Related]
7. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry. Daryaei E; Rouhani S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719 [TBL] [Abstract][Full Text] [Related]
8. Transport on directed percolation clusters. Janssen HK; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):025103. PubMed ID: 11308529 [TBL] [Abstract][Full Text] [Related]
9. Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster. von Ferber C; Blavats'ka V; Folk R; Holovatch Y Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035104. PubMed ID: 15524568 [TBL] [Abstract][Full Text] [Related]
10. Transport on percolation clusters with power-law distributed bond strengths. Alava M; Moukarzel CF Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056106. PubMed ID: 12786219 [TBL] [Abstract][Full Text] [Related]
12. Self-avoiding walks on Sierpinski lattices in two and three dimensions. Ordemann A; Porto M; Roman HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021107. PubMed ID: 11863503 [TBL] [Abstract][Full Text] [Related]
13. Multifractal properties of resistor diode percolation. Stenull O; Janssen HK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036124. PubMed ID: 11909182 [TBL] [Abstract][Full Text] [Related]
14. Multifractal properties of the random resistor network. Barthelemy M; Buldyrev SV; Havlin S; Stanley HE Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):R3283-6. PubMed ID: 11088180 [TBL] [Abstract][Full Text] [Related]
15. Relevance of percolation theory to the vulcanization transition. Janssen HK; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026119. PubMed ID: 11497663 [TBL] [Abstract][Full Text] [Related]
16. Fractal behavior of the shortest path between two lines in percolation systems. Paul G; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066105. PubMed ID: 12188781 [TBL] [Abstract][Full Text] [Related]
17. Multifractality in a broad class of disordered systems. Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):015101. PubMed ID: 15324110 [TBL] [Abstract][Full Text] [Related]
18. Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution. Stenull O; Janssen HK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036103. PubMed ID: 11308705 [TBL] [Abstract][Full Text] [Related]
19. Asymptotic scaling behavior of self-avoiding walks on critical percolation clusters. Fricke N; Janke W Phys Rev Lett; 2014 Dec; 113(25):255701. PubMed ID: 25554895 [TBL] [Abstract][Full Text] [Related]
20. Scaling exponents for a monkey on a tree: fractal dimensions of randomly branched polymers. Janssen HK; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051126. PubMed ID: 23004722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]