These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19257030)

  • 1. Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis.
    Rose KA; Hoffman B; Saintillan D; Shaqfeh ES; Santiago JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011402. PubMed ID: 19257030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of the effect of external electric fields on interfacial dynamics of colloidal particles.
    Kazoe Y; Yoda M
    Langmuir; 2011 Sep; 27(18):11481-8. PubMed ID: 21744873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations of the near-wall accumulation of suspended particles due to shear and electroosmotic flow in opposite directions.
    Yee AJ; Yoda M
    Electrophoresis; 2021 Nov; 42(21-22):2215-2222. PubMed ID: 34587651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DC dielectrophoretic particle-particle interactions and their relative motions.
    Ai Y; Qian S
    J Colloid Interface Sci; 2010 Jun; 346(2):448-54. PubMed ID: 20334869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel particle separation method based on induced-charge electro-osmotic flow and polarizability of dielectric particles.
    Zhang F; Li D
    Electrophoresis; 2014 Oct; 35(20):2922-9. PubMed ID: 25043290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow.
    Satoh A; Ozaki M; Ishikawa T; Majima T
    J Colloid Interface Sci; 2005 Dec; 292(2):581-90. PubMed ID: 16081082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced-charge electroosmotic flow around dielectric particles in uniform electric field.
    Zhang F; Li D
    J Colloid Interface Sci; 2013 Nov; 410():102-10. PubMed ID: 24034219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sedimentation of concentrated monodisperse colloidal suspensions: role of collective particle interaction forces.
    Vesaratchanon JS; Nikolov A; Wasan DT
    J Colloid Interface Sci; 2008 Jun; 322(1):180-9. PubMed ID: 18384801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lift forces on colloidal particles in combined electroosmotic and Poiseuille flow.
    Cevheri N; Yoda M
    Langmuir; 2014 Nov; 30(46):13771-80. PubMed ID: 25343853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoresis of nanoparticles.
    Kadaksham AT; Singh P; Aubry N
    Electrophoresis; 2004 Nov; 25(21-22):3625-32. PubMed ID: 15565698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic motion of a spherical particle in a converging-diverging nanotube.
    Qian S; Wang A; Afonien JK
    J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.