These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19257049)
61. Phase behavior and free interfaces of a lattice-gas nematic-liquid-crystal model. Bates MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041706. PubMed ID: 12005845 [TBL] [Abstract][Full Text] [Related]
62. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Pergantis SA; Jones-Lepp TL; Heithmar EM Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728 [TBL] [Abstract][Full Text] [Related]
63. Electroconvection in nematic liquid crystals via nanoparticle doping. Urbanski M; Kinkead B; Qi H; Hegmann T; Kitzerow HS Nanoscale; 2010 Jul; 2(7):1118-21. PubMed ID: 20648336 [TBL] [Abstract][Full Text] [Related]
64. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. Foldbjerg R; Wang J; Beer C; Thorsen K; Sutherland DS; Autrup H Chem Biol Interact; 2013 Jun; 204(1):28-38. PubMed ID: 23623845 [TBL] [Abstract][Full Text] [Related]
65. On the lifetime of the transients (NP)-(CH3)n (NP = Ag0, Au0, TiO2 nanoparticles) formed in the reactions between methyl radicals and nanoparticles suspended in aqueous solutions. Bar-Ziv R; Zilbermann I; Oster-Golberg O; Zidki T; Yardeni G; Cohen H; Meyerstein D Chemistry; 2012 Apr; 18(15):4699-705. PubMed ID: 22383370 [TBL] [Abstract][Full Text] [Related]
66. Phase behavior of a nematic liquid crystal in contact with a chemically and geometrically structured substrate. Harnau L; Kondrat S; Poniewierski A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011701. PubMed ID: 16089981 [TBL] [Abstract][Full Text] [Related]
67. Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation. Cheng S; Grest GS ACS Macro Lett; 2016 Jun; 5(6):694-698. PubMed ID: 35614677 [TBL] [Abstract][Full Text] [Related]
68. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts. Qi H; Kinkead B; Marx VM; Zhang HR; Hegmann T Chemphyschem; 2009 Jun; 10(8):1211-8. PubMed ID: 19334026 [TBL] [Abstract][Full Text] [Related]
69. Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study. Kim EB; Guzman O; Grollau S; Abbott NL; de Pablo JJ J Chem Phys; 2004 Jul; 121(4):1949-61. PubMed ID: 15260747 [TBL] [Abstract][Full Text] [Related]
70. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system. Kuhn SJ; Hallahan DE; Giorgio TD Ann Biomed Eng; 2006 Jan; 34(1):51-8. PubMed ID: 16477503 [TBL] [Abstract][Full Text] [Related]
71. Anchoring of a nematic liquid crystal on a wettability gradient. Price AD; Schwartz DK Langmuir; 2006 Nov; 22(23):9753-9. PubMed ID: 17073507 [TBL] [Abstract][Full Text] [Related]
72. The isotropic-nematic interface with an oblique anchoring condition. Kamil SM; Bhattacharjee AK; Adhikari R; Menon GI J Chem Phys; 2009 Nov; 131(17):174701. PubMed ID: 19895029 [TBL] [Abstract][Full Text] [Related]
73. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. Van Lehn RC; Alexander-Katz A J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475 [TBL] [Abstract][Full Text] [Related]
74. Erratum: "Molecular dynamics simulations studies of nanoparticles in an isotropic liquid crystal matrix: Single particle behavior and pairwise interactions" [J. Chem. Phys. 124, 161101 (2006)] and "Molecular dynamics simulations of nanoparticles in dense isotropic nematogens: The role of matrix-induced long-range repulsive interactions" [J. Chem. Phys. 124, 184701 (2006)]. Tian P; Smith GD; Glaser M J Chem Phys; 2008 Apr; 128(15):159901. PubMed ID: 18433288 [No Abstract] [Full Text] [Related]
75. Adhesion of nanoparticles to polymer brushes studied with the ghost tweezers method. Cheng J; Vishnyakov A; Neimark AV J Chem Phys; 2015 Jan; 142(3):034705. PubMed ID: 25612723 [TBL] [Abstract][Full Text] [Related]
76. Self-assembly of nanoparticles onto the surfaces of polystyrene spheres with a tunable composition and loading. Pilapil BK; Wang MC; Paul MT; Nazemi A; Gates BD Nanotechnology; 2015 Feb; 26(5):055601. PubMed ID: 25573923 [TBL] [Abstract][Full Text] [Related]
77. Preparation of size-controlled silver nanoparticles and chitosan-based composites and their anti-microbial activities. Nguyen VQ; Ishihara M; Mori Y; Nakamura S; Kishimoto S; Fujita M; Hattori H; Kanatani Y; Ono T; Miyahira Y; Matsui T Biomed Mater Eng; 2013; 23(6):473-83. PubMed ID: 24165550 [TBL] [Abstract][Full Text] [Related]
78. Isotropic-nematic transition of hard rods immersed in random sphere matrices. Schmidt M; Dijkstra M J Chem Phys; 2004 Dec; 121(23):12067-73. PubMed ID: 15634171 [TBL] [Abstract][Full Text] [Related]
79. Self-assembly via branching morphologies in nematic liquid-crystal nanocomposites. Gurevich S; Soule E; Rey A; Reven L; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020501. PubMed ID: 25215674 [TBL] [Abstract][Full Text] [Related]
80. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles. Lee OS; Schatz GC Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]