These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19257126)
1. Phase-response curves of coupled oscillators. Ko TW; Ermentrout GB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016211. PubMed ID: 19257126 [TBL] [Abstract][Full Text] [Related]
2. A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Dror RO; Canavier CC; Butera RJ; Clark JW; Byrne JH Biol Cybern; 1999 Jan; 80(1):11-23. PubMed ID: 20809292 [TBL] [Abstract][Full Text] [Related]
3. Predicting synchrony in heterogeneous pulse coupled oscillators. Talathi SS; Hwang DU; Miliotis A; Carney PR; Ditto WL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021908. PubMed ID: 19792152 [TBL] [Abstract][Full Text] [Related]
4. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength. Bîrzu A; Krischer K Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084 [TBL] [Abstract][Full Text] [Related]
5. Optimal phase-selective entrainment of electrochemical oscillators with different phase response curves. Luis Ocampo-Espindola J; Singhal B; Li JS; Kiss IZ Chaos; 2024 Jul; 34(7):. PubMed ID: 38995992 [TBL] [Abstract][Full Text] [Related]
7. Type-II phase resetting curve is optimal for stochastic synchrony. Abouzeid A; Ermentrout B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011911. PubMed ID: 19658733 [TBL] [Abstract][Full Text] [Related]
8. Experimental and theoretical approach for the clustering of globally coupled density oscillators based on phase response. Horie M; Sakurai T; Kitahata H Phys Rev E; 2016 Jan; 93(1):012212. PubMed ID: 26871078 [TBL] [Abstract][Full Text] [Related]
9. Collective phase locked states in a chain of coupled chaotic oscillators. Valladares DL; Boccaletti S; Feudel F; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):055208. PubMed ID: 12059635 [TBL] [Abstract][Full Text] [Related]
10. Stimulus-locked responses of two phase oscillators coupled with delayed feedback. Krachkovskyi V; Popovych OV; Tass PA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066220. PubMed ID: 16906959 [TBL] [Abstract][Full Text] [Related]
11. Synchronization between two weakly coupled delay-line oscillators. Levy EC; Horowitz M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026 [TBL] [Abstract][Full Text] [Related]
12. Stochastic switching in delay-coupled oscillators. D'Huys O; Jüngling T; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032918. PubMed ID: 25314515 [TBL] [Abstract][Full Text] [Related]
13. Method for determining a coupling function in coupled oscillators with application to Belousov-Zhabotinsky oscillators. Miyazaki J; Kinoshita S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056209. PubMed ID: 17279986 [TBL] [Abstract][Full Text] [Related]
14. Aging and clustering in globally coupled oscillators. Daido H; Nakanishi K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056206. PubMed ID: 17677147 [TBL] [Abstract][Full Text] [Related]
15. The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory. Pazó D; Gallego R Chaos; 2020 Jul; 30(7):073139. PubMed ID: 32752623 [TBL] [Abstract][Full Text] [Related]
16. Determination of a coupling function in multicoupled oscillators. Miyazaki J; Kinoshita S Phys Rev Lett; 2006 May; 96(19):194101. PubMed ID: 16803103 [TBL] [Abstract][Full Text] [Related]
17. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related]
18. Synchronization scenarios in the Winfree model of coupled oscillators. Gallego R; Montbrió E; Pazó D Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589 [TBL] [Abstract][Full Text] [Related]
19. Various synchronous states due to coupling strength inhomogeneity and coupling functions in systems of coupled identical oscillators. Kim J; Moon JY; Lee U; Kim S; Ko TW Chaos; 2019 Jan; 29(1):011106. PubMed ID: 30709108 [TBL] [Abstract][Full Text] [Related]
20. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Hong H; Park H; Choi MY Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]