These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19257144)

  • 1. Modeling of surface-wave discharges with cylindrical symmetry.
    Alves LL; Letout S; Boisse-Laporte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016403. PubMed ID: 19257144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of atmospheric-pressure plasma columns sustained by surface waves.
    Kabouzi Y; Graves DB; Castaños-Martínez E; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016402. PubMed ID: 17358263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent axial modeling of surface-wave-produced discharges at low and intermediate pressures.
    Petrova T; Benova E; Petrov G; Zhelyazkov I
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):875-86. PubMed ID: 11969832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas heating in low-pressure microwave argon discharges.
    Palmero A; Cotrino J; Lao C; González-Elipe AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066401. PubMed ID: 12513406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of wall collisions in a coaxial Hall discharge.
    Meezan NB; Cappelli MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036401. PubMed ID: 12366261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the effect of dust on the plasma parameters in a dusty argon discharge under microgravity.
    Akdim MR; Goedheer WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066407. PubMed ID: 16241359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical model for the radio-frequency sheath.
    Czarnetzki U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063101. PubMed ID: 24483571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.
    Chang C; Verboncoeur J; Guo MN; Zhu M; Song W; Li S; Chen CH; Bai XC; Xie JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063107. PubMed ID: 25615205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stationary equilibria of two fluid plasmas having significant, internal, static electric fields.
    Edwards WF; Held ED
    Phys Rev Lett; 2004 Dec; 93(25):255001. PubMed ID: 15697902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of diffuse, constricted-stratified, and constricted modes of a dc discharge in argon: Hysteresis transition between diffuse and constricted-stratified modes.
    Shkurenkov IA; Mankelevich YA; Rakhimova TV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046406. PubMed ID: 19518358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron energy distributions and anomalous skin depth effects in high-plasma-density inductively coupled discharges.
    Vasenkov AV; Kushner MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066411. PubMed ID: 12513416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic simulation model of magnetron discharges.
    Porokhova IA; Golubovskii YB; Bretagne J; Tichy M; Behnke JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056408. PubMed ID: 11415020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concept of power absorbed and lost per electron in surface-wave plasma columns and its contribution to the advanced understanding and modeling of microwave discharges.
    Moisan M; Ganachev IP; Nowakowska H
    Phys Rev E; 2022 Oct; 106(4-2):045202. PubMed ID: 36397503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
    Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction.
    Castaños Martinez E; Kabouzi Y; Makasheva K; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066405. PubMed ID: 15697512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution.
    Denysenko I; Yu MY; Ostrikov K; Smolyakov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046403. PubMed ID: 15600526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy of the electron component in a cylindrical magnetron discharge. II. Application to real magnetron discharge.
    Porokhova IA; Golubovskii YB; Behnke JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066407. PubMed ID: 16089880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical model of anode glow patterns in elevated-pressure gas discharges.
    Islamov RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046405. PubMed ID: 11690154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of microwave-induced plasma in argon at atmospheric pressure.
    Baeva M; Bösel A; Ehlbeck J; Loffhagen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056404. PubMed ID: 23004876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic model of ionization waves in a positive column at intermediate pressures in inert gases.
    Golubovskii YB; Maiorov VA; Nekutchaev VO; Behnke J; Behnke JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036409. PubMed ID: 11308777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.