These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Nho HW; Yoon TH Lab Chip; 2013 Mar; 13(5):773-6. PubMed ID: 23340906 [TBL] [Abstract][Full Text] [Related]
5. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic sorting with a moving array of optical traps. Dasgupta R; Ahlawat S; Gupta PK Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110 [TBL] [Abstract][Full Text] [Related]
9. Cell separation based on size and deformability using microfluidic funnel ratchets. McFaul SM; Lin BK; Ma H Lab Chip; 2012 Jul; 12(13):2369-76. PubMed ID: 22517056 [TBL] [Abstract][Full Text] [Related]
10. Submicron separation of microspheres via travelling surface acoustic waves. Destgeer G; Ha BH; Jung JH; Sung HJ Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065 [TBL] [Abstract][Full Text] [Related]
11. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array. Han KH; Han SI; Frazier AB Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750 [TBL] [Abstract][Full Text] [Related]
13. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping. Didar TF; Li K; Tabrizian M; Veres T Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083 [TBL] [Abstract][Full Text] [Related]
14. Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Balvin M; Sohn E; Iracki T; Drazer G; Frechette J Phys Rev Lett; 2009 Aug; 103(7):078301. PubMed ID: 19792691 [TBL] [Abstract][Full Text] [Related]
16. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lin SC; Lu JC; Sung YL; Lin CT; Tung YC Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015 [TBL] [Abstract][Full Text] [Related]
17. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656 [TBL] [Abstract][Full Text] [Related]
18. Automatic particle detection and sorting in an electrokinetic microfluidic chip. Song Y; Peng R; Wang J; Pan X; Sun Y; Li D Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422 [TBL] [Abstract][Full Text] [Related]
19. Deterministic microfluidic ratchet based on the deformation of individual cells. Guo Q; McFaul SM; Ma H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051910. PubMed ID: 21728574 [TBL] [Abstract][Full Text] [Related]
20. Multiplex single particle analysis in microfluidics. Dannhauser D; Romeo G; Causa F; De Santo I; Netti PA Analyst; 2014 Oct; 139(20):5239-46. PubMed ID: 25133272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]