These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19257515)

  • 1. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields.
    Kar S; Robinson AP; Carroll DC; Lundh O; Markey K; McKenna P; Norreys P; Zepf M
    Phys Rev Lett; 2009 Feb; 102(5):055001. PubMed ID: 19257515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-driven fast electron collimation in targets with resistivity boundary.
    Ramakrishna B; Kar S; Robinson AP; Adams DJ; Markey K; Quinn MN; Yuan XH; McKenna P; Lancaster KL; Green JS; Scott RH; Norreys PA; Schreiber J; Zepf M
    Phys Rev Lett; 2010 Sep; 105(13):135001. PubMed ID: 21230778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.
    Robinson AP; Key MH; Tabak M
    Phys Rev Lett; 2012 Mar; 108(12):125004. PubMed ID: 22540591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced collective stopping and drift of electron beams in fusion plasmas with heavy-ion species.
    Wang XJ; Hu ZH; Wang YN
    Phys Rev E; 2020 Apr; 101(4-1):043203. PubMed ID: 32422758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic high-current electron-beam stopping-power characterization in solids and plasmas: collisional versus resistive effects.
    Vauzour B; Santos JJ; Debayle A; Hulin S; Schlenvoigt HP; Vaisseau X; Batani D; Baton SD; Honrubia JJ; Nicolaï P; Beg FN; Benocci R; Chawla S; Coury M; Dorchies F; Fourment C; d'Humières E; Jarrot LC; McKenna P; Rhee YJ; Tikhonchuk VT; Volpe L; Yahia V
    Phys Rev Lett; 2012 Dec; 109(25):255002. PubMed ID: 23368474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.
    Vaisseau X; Debayle A; Honrubia JJ; Hulin S; Morace A; Nicolaï P; Sawada H; Vauzour B; Batani D; Beg FN; Davies JR; Fedosejevs R; Gray RJ; Kemp GE; Kerr S; Li K; Link A; McKenna P; McLean HS; Mo M; Patel PK; Park J; Peebles J; Rhee YJ; Sorokovikova A; Tikhonchuk VT; Volpe L; Wei M; Santos JJ
    Phys Rev Lett; 2015 Mar; 114(9):095004. PubMed ID: 25793822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas.
    Cai HB; Zhu SP; Chen M; Wu SZ; He XT; Mima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036408. PubMed ID: 21517605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.
    Bailly-Grandvaux M; Santos JJ; Bellei C; Forestier-Colleoni P; Fujioka S; Giuffrida L; Honrubia JJ; Batani D; Bouillaud R; Chevrot M; Cross JE; Crowston R; Dorard S; Dubois JL; Ehret M; Gregori G; Hulin S; Kojima S; Loyez E; Marquès JR; Morace A; Nicolaï P; Roth M; Sakata S; Schaumann G; Serres F; Servel J; Tikhonchuk VT; Woolsey N; Zhang Z
    Nat Commun; 2018 Jan; 9(1):102. PubMed ID: 29317653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of resistive guiding of laser-driven fast-electron currents in solid targets.
    Leblanc P; Sentoku Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023109. PubMed ID: 25353588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annular fast electron transport in silicon arising from low-temperature resistivity.
    MacLellan DA; Carroll DC; Gray RJ; Booth N; Burza M; Desjarlais MP; Du F; Gonzalez-Izquierdo B; Neely D; Powell HW; Robinson AP; Rusby DR; Scott GG; Yuan XH; Wahlström CG; McKenna P
    Phys Rev Lett; 2013 Aug; 111(9):095001. PubMed ID: 24033041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.
    Chatterjee G; Singh PK; Robinson APL; Blackman D; Booth N; Culfa O; Dance RJ; Gizzi LA; Gray RJ; Green JS; Koester P; Kumar GR; Labate L; Lad AD; Lancaster KL; Pasley J; Woolsey NC; Rajeev PP
    Sci Rep; 2017 Aug; 7(1):8347. PubMed ID: 28827645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling fast-electron-beam divergence using two laser pulses.
    Scott RH; Beaucourt C; Schlenvoigt HP; Markey K; Lancaster KL; Ridgers CP; Brenner CM; Pasley J; Gray RJ; Musgrave IO; Robinson AP; Li K; Notley MM; Davies JR; Baton SD; Santos JJ; Feugeas JL; Nicolaï P; Malka G; Tikhonchuk VT; McKenna P; Neely D; Rose SJ; Norreys PA
    Phys Rev Lett; 2012 Jul; 109(1):015001. PubMed ID: 23031109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the plasma-generated magnetic field on relativistic electron transport.
    Nicolaï P; Feugeas JL; Regan C; Olazabal-Loumé M; Breil J; Dubroca B; Morreeuw JP; Tikhonchuk V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016402. PubMed ID: 21867317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics.
    Santos JJ; Amiranoff F; Baton SD; Gremillet L; Koenig M; Martinolli E; Rabec Le Gloahec M; Rousseaux C; Batani D; Bernardinello A; Greison G; Hall T
    Phys Rev Lett; 2002 Jul; 89(2):025001. PubMed ID: 12096998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence of laser-driven relativistic electron beams.
    Debayle A; Honrubia JJ; d'Humières E; Tikhonchuk VT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036405. PubMed ID: 21230194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of target material on fast-electron transport and resistive collimation.
    Chawla S; Wei MS; Mishra R; Akli KU; Chen CD; McLean HS; Morace A; Patel PK; Sawada H; Sentoku Y; Stephens RB; Beg FN
    Phys Rev Lett; 2013 Jan; 110(2):025001. PubMed ID: 23383907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopping of relativistic electrons in a partially degenerate electron fluid.
    Starikov KV; Deutsch C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026407. PubMed ID: 15783429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically guided fast electrons in cylindrically compressed matter.
    Pérez F; Debayle A; Honrubia J; Koenig M; Batani D; Baton SD; Beg FN; Benedetti C; Brambrink E; Chawla S; Dorchies F; Fourment C; Galimberti M; Gizzi LA; Gremillet L; Heathcote R; Higginson DP; Hulin S; Jafer R; Koester P; Labate L; Lancaster KL; MacKinnon AJ; MacPhee AG; Nazarov W; Nicolai P; Pasley J; Ramis R; Richetta M; Santos JJ; Sgattoni A; Spindloe C; Vauzour B; Vinci T; Volpe L
    Phys Rev Lett; 2011 Aug; 107(6):065004. PubMed ID: 21902333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
    Sarkisov GS; Ivanov VV; Leblanc P; Sentoku Y; Yates K; Wiewior P; Chalyy O; Astanovitskiy A; Bychenkov VY; Jobe D; Spielman RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036412. PubMed ID: 23031038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas.
    Hu ZH; Song YH; Wang YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016402. PubMed ID: 22400683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.