These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Doped Mott insulators are insulators: hole localization in the cuprates. Choy TP; Phillips P Phys Rev Lett; 2005 Nov; 95(19):196405. PubMed ID: 16384004 [TBL] [Abstract][Full Text] [Related]
5. Mott insulators with boundary zeros. Wagner N; Crippa L; Amaricci A; Hansmann P; Klett M; König EJ; Schäfer T; Sante DD; Cano J; Millis AJ; Georges A; Sangiovanni G Nat Commun; 2023 Nov; 14(1):7531. PubMed ID: 37985660 [TBL] [Abstract][Full Text] [Related]
6. Pseudogap in doped Mott insulators is the near-neighbor analogue of the Mott gap. Stanescu TD; Phillips P Phys Rev Lett; 2003 Jul; 91(1):017002. PubMed ID: 12906566 [TBL] [Abstract][Full Text] [Related]
7. Composite-fermion theory for pseudogap, Fermi arc, hole pocket, and non-Fermi liquid of underdoped cuprate superconductors. Yamaji Y; Imada M Phys Rev Lett; 2011 Jan; 106(1):016404. PubMed ID: 21231759 [TBL] [Abstract][Full Text] [Related]
8. Topological order in the pseudogap metal. Scheurer MS; Chatterjee S; Wu W; Ferrero M; Georges A; Sachdev S Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3665-E3672. PubMed ID: 29610351 [TBL] [Abstract][Full Text] [Related]
9. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model. Bragança H; Sakai S; Aguiar MCO; Civelli M Phys Rev Lett; 2018 Feb; 120(6):067002. PubMed ID: 29481286 [TBL] [Abstract][Full Text] [Related]
10. Self-energy behavior away from the Fermi surface in doped Mott insulators. Merino J; Gunnarsson O; Kotliar G J Phys Condens Matter; 2016 Feb; 28(4):045501. PubMed ID: 26742570 [TBL] [Abstract][Full Text] [Related]
11. Doublon-Holon Origin of the Subpeaks at the Hubbard Band Edges. Lee SB; von Delft J; Weichselbaum A Phys Rev Lett; 2017 Dec; 119(23):236402. PubMed ID: 29286682 [TBL] [Abstract][Full Text] [Related]
12. Gauge approach to the 'pseudogap' phenomenology of the spectral weight in high Tc cuprates. Marchetti PA; Gambaccini M J Phys Condens Matter; 2012 Nov; 24(47):475601. PubMed ID: 23103555 [TBL] [Abstract][Full Text] [Related]
13. Spin-Liquid Insulators Can Be Landau's Fermi Liquids. Fabrizio M Phys Rev Lett; 2023 Apr; 130(15):156702. PubMed ID: 37115899 [TBL] [Abstract][Full Text] [Related]
14. Pseudogap temperature as a Widom line in doped Mott insulators. Sordi G; Sémon P; Haule K; Tremblay AM Sci Rep; 2012; 2():547. PubMed ID: 22855703 [TBL] [Abstract][Full Text] [Related]
15. Breakup of the Fermi surface near the mott transition in low-dimensional systems. Berthod C; Giamarchi T; Biermann S; Georges A Phys Rev Lett; 2006 Sep; 97(13):136401. PubMed ID: 17026055 [TBL] [Abstract][Full Text] [Related]
16. Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator. Ye C; Cai P; Yu R; Zhou X; Ruan W; Liu Q; Jin C; Wang Y Nat Commun; 2013; 4():1365. PubMed ID: 23340405 [TBL] [Abstract][Full Text] [Related]
17. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Koepsell J; Bourgund D; Sompet P; Hirthe S; Bohrdt A; Wang Y; Grusdt F; Demler E; Salomon G; Gross C; Bloch I Science; 2021 Oct; 374(6563):82-86. PubMed ID: 34591626 [TBL] [Abstract][Full Text] [Related]
18. Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator. Kawasugi Y; Seki K; Edagawa Y; Sato Y; Pu J; Takenobu T; Yunoki S; Yamamoto HM; Kato R Nat Commun; 2016 Aug; 7():12356. PubMed ID: 27492864 [TBL] [Abstract][Full Text] [Related]
19. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model. Laad MS; Koley S; Taraphder A J Phys Condens Matter; 2012 Jun; 24(23):232201. PubMed ID: 22589244 [TBL] [Abstract][Full Text] [Related]
20. Theory for slightly doped antiferromagnetic mott insulators. Lee TK; Ho CM; Nagaosa N Phys Rev Lett; 2003 Feb; 90(6):067001. PubMed ID: 12633317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]