These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19257537)

  • 1. Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.
    Aryanpour K; Han JE
    Phys Rev Lett; 2009 Feb; 102(5):056805. PubMed ID: 19257537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic origin of the '0.7-anomaly' in quantum point contacts.
    Bauer F; Heyder J; Schubert E; Borowsky D; Taubert D; Bruognolo B; Schuh D; Wegscheider W; von Delft J; Ludwig S
    Nature; 2013 Sep; 501(7465):73-8. PubMed ID: 23995681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin Fluctuations in the 0.7 Anomaly in Quantum Point Contacts.
    Schimmel DH; Bruognolo B; von Delft J
    Phys Rev Lett; 2017 Nov; 119(19):196401. PubMed ID: 29219510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots.
    Ding GH; Ye F; Dong B
    J Phys Condens Matter; 2009 Nov; 21(45):455303. PubMed ID: 21694008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts.
    Brun B; Martins F; Faniel S; Hackens B; Cavanna A; Ulysse C; Ouerghi A; Gennser U; Mailly D; Simon P; Huant S; Bayot V; Sanquer M; Sellier H
    Phys Rev Lett; 2016 Apr; 116(13):136801. PubMed ID: 27081995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of spin-orbit interactions on the 0.7 anomaly in quantum point contacts.
    Goulko O; Bauer F; Heyder J; von Delft J
    Phys Rev Lett; 2014 Dec; 113(26):266402. PubMed ID: 25615360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What lurks below the last plateau: experimental studies of the 0.7 × 2e(2)/h conductance anomaly in one-dimensional systems.
    Micolich AP
    J Phys Condens Matter; 2011 Nov; 23(44):443201. PubMed ID: 21997403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-phonon scattering in quantum point contacts.
    Seelig G; Matveev KA
    Phys Rev Lett; 2003 May; 90(17):176804. PubMed ID: 12786092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy of phonons and spin torques in magnetic point contacts.
    Yanson IK; Naidyuk YG; Bashlakov DL; Fisun VV; Balkashin OP; Korenivski V; Konovalenko A; Shekhter RI
    Phys Rev Lett; 2005 Oct; 95(18):186602. PubMed ID: 16383931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum correction to conductivity close to a ferromagnetic quantum critical point in two dimensions.
    Paul I; Pépin C; Narozhny BN; Maslov DL
    Phys Rev Lett; 2005 Jul; 95(1):017206. PubMed ID: 16090653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length-dependent conductance of a spin-incoherent Hubbard chain: Monte Carlo calculations.
    Syljuåsen OF
    Phys Rev Lett; 2007 Apr; 98(16):166401. PubMed ID: 17501437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy.
    Brun B; Martins F; Faniel S; Hackens B; Bachelier G; Cavanna A; Ulysse C; Ouerghi A; Gennser U; Mailly D; Huant S; Bayot V; Sanquer M; Sellier H
    Nat Commun; 2014 Jun; 5():4290. PubMed ID: 24978440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.
    Kato T; Saita T
    J Phys Condens Matter; 2011 Mar; 23(10):106001. PubMed ID: 21335639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin conservation and Fermi liquid near a ferromagnetic quantum critical point.
    Chubukov AV; Maslov DL
    Phys Rev Lett; 2009 Nov; 103(21):216401. PubMed ID: 20366055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent quantum electron transport in 2D point contacts.
    Krishtop TV; Nagaev KE
    J Phys Condens Matter; 2013 Feb; 25(5):055301. PubMed ID: 23288558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of linear thiophenolate-bridged heteronuclear complexes [LFeMFeL](n)(+) (M = Cr, Co, Fe; n = 1-3): a combination of kinetic exchange interaction and electron delocalization.
    Chibotaru LF; Girerd JJ; Blondin G; Glaser T; Wieghardt K
    J Am Chem Soc; 2003 Oct; 125(41):12615-30. PubMed ID: 14531706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kondo model for the "0.7 anomaly" in transport through a quantum point contact.
    Meir Y; Hirose K; Wingreen NS
    Phys Rev Lett; 2002 Nov; 89(19):196802. PubMed ID: 12443139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic properties of semiconductor quantum wires for shallow symmetric and asymmetric confinements.
    Yakimenko II; Yakimenko IP
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34852329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodeling Approach to Ferromagnetic Spin-Wave Excitations in the High-Spin Cluster Mn
    Nekuruh S; Nehrkorn J; Prsa K; Dreiser J; Ako AM; Anson CE; Unruh T; Powell AK; Waldmann O
    Inorg Chem; 2019 Aug; 58(16):11256-11268. PubMed ID: 31385695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal spin fluctuations and superconductivity in ferromagnetic ZrZn2 from Ab initio calculations.
    Santi G; Dugdale SB; Jarlborg T
    Phys Rev Lett; 2001 Dec; 87(24):247004. PubMed ID: 11736533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.