BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19257557)

  • 1. Icosahedral order, frustration, and the glass transition: evidence from time-dependent nucleation and supercooled liquid structure studies.
    Shen YT; Kim TH; Gangopadhyay AK; Kelton KF
    Phys Rev Lett; 2009 Feb; 102(5):057801. PubMed ID: 19257557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric frustration of icosahedron in metallic glasses.
    Hirata A; Kang LJ; Fujita T; Klumov B; Matsue K; Kotani M; Yavari AR; Chen MW
    Science; 2013 Jul; 341(6144):376-9. PubMed ID: 23845945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space.
    Turci F; Tarjus G; Royall CP
    Phys Rev Lett; 2017 May; 118(21):215501. PubMed ID: 28598643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid.
    Lad KN; Jakse N; Pasturel A
    J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and relaxation in germanium selenide glasses and supercooled liquids: a Raman spectroscopic study.
    Edwards TG; Sen S
    J Phys Chem B; 2011 Apr; 115(15):4307-14. PubMed ID: 21446741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids.
    Wu ZW; Li FX; Huo CW; Li MZ; Wang WH; Liu KX
    Sci Rep; 2016 Oct; 6():35967. PubMed ID: 27779239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid.
    Kurtuldu G; Shamlaye KF; Löffler JF
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6123-6128. PubMed ID: 29793938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-liquid transition in a strong bulk metallic glass-forming liquid.
    Wei S; Yang F; Bednarcik J; Kaban I; Shuleshova O; Meyer A; Busch R
    Nat Commun; 2013; 4():2083. PubMed ID: 23817404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass.
    Wang Q; Liu CT; Yang Y; Dong YD; Lu J
    Phys Rev Lett; 2011 May; 106(21):215505. PubMed ID: 21699316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses.
    Dmowski W; Gierlotka S; Wang Z; Yokoyama Y; Palosz B; Egami T
    Sci Rep; 2017 Jul; 7(1):6564. PubMed ID: 28747789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and Growth of the Supercooled Liquid Phase Control Glass Transition in Bulk Ultrastable Glasses.
    Vila-Costa A; Ràfols-Ribé J; González-Silveira M; Lopeandia AF; Abad-Muñoz L; Rodríguez-Viejo J
    Phys Rev Lett; 2020 Feb; 124(7):076002. PubMed ID: 32142312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of the fragility and heat capacity jump in the supercooled liquid region with the shear modulus relaxation in metallic glasses.
    Makarov AS; Qiao JC; Kobelev NP; Aronin AS; Khonik VA
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33910186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous silicon exhibits a glass transition.
    Hedler A; Klaumünzer SL; Wesch W
    Nat Mater; 2004 Nov; 3(11):804-9. PubMed ID: 15502833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization at the glass transition in supercooled thin films of methanol.
    Dounce SM; Mundy J; Dai HL
    J Chem Phys; 2007 May; 126(19):191111. PubMed ID: 17523791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation instability in supercooled Cu-Zr-Al glass-forming liquids.
    Ryltsev RE; Klumov BA; Chtchelkatchev NM; Shunyaev KY
    J Chem Phys; 2018 Oct; 149(16):164502. PubMed ID: 30384697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic Glacial Glass Formation by a First-Order Liquid-Liquid Transition.
    Shen J; Lu Z; Wang JQ; Lan S; Zhang F; Hirata A; Chen MW; Wang XL; Wen P; Sun YH; Bai HY; Wang WH
    J Phys Chem Lett; 2020 Aug; 11(16):6718-6723. PubMed ID: 32649204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase.
    Elenius M; Oppelstrup T; Dzugutov M
    J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of an isothermal glass transition in metallic glasses.
    Sun YT; Ding DW; Lu Z; Li MZ; Liu YH; Wang WH
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.