These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19257565)

  • 1. Velocity oscillations in microfluidic flows of concentrated colloidal suspensions.
    Isa L; Besseling R; Morozov AN; Poon WC
    Phys Rev Lett; 2009 Feb; 102(5):058302. PubMed ID: 19257565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-velocity transport of nanoparticles through 1-D nanochannels at very large particle to channel diameter ratios.
    Vankrunkelsven S; Clicq D; Pappaert K; Baron GV; Desmet G
    Anal Chem; 2004 Jun; 76(11):3005-11. PubMed ID: 15167775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of shear and walls on the diffusion of colloids in microchannels.
    Ghosh S; Mugele F; Duits MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052305. PubMed ID: 26066175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.
    Cheng X; McCoy JH; Israelachvili JN; Cohen I
    Science; 2011 Sep; 333(6047):1276-9. PubMed ID: 21885778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clogging of microchannels by nano-particles due to hetero-coagulation in elongational flow.
    Georgieva K; Dijkstra DJ; Fricke H; Willenbacher N
    J Colloid Interface Sci; 2010 Dec; 352(2):265-77. PubMed ID: 20851405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dilatant flow of concentrated suspensions of rough particles.
    Lootens D; van Damme H; Hémar Y; Hébraud P
    Phys Rev Lett; 2005 Dec; 95(26):268302. PubMed ID: 16486413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions.
    Schembri F; Bodiguel H; Colin A
    Soft Matter; 2015 Jan; 11(1):169-78. PubMed ID: 25376855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium dynamics of a confined colloidal bilayer in a planar shear flow.
    Vezirov TA; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052307. PubMed ID: 24329264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jet instability of a shear-thickening concentrated suspension.
    Liard M; Sato A; Sautel J; Lootens D; Hébraud P
    Eur Phys J E Soft Matter; 2020 Nov; 43(11):69. PubMed ID: 33190210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative imaging of colloidal flows.
    Besseling R; Isa L; Weeks ER; Poon WC
    Adv Colloid Interface Sci; 2009 Feb; 146(1-2):1-17. PubMed ID: 19012873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined electrokinetic and shear flows control colloidal particle distribution across microchannel cross-sections.
    Lochab V; Prakash S
    Soft Matter; 2021 Jan; 17(3):611-620. PubMed ID: 33201951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions.
    Isa L; Besseling R; Poon WC
    Phys Rev Lett; 2007 May; 98(19):198305. PubMed ID: 17677670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperativity and segregation in confined flows of soft binary glasses.
    van de Laar T; Schroën K; Sprakel J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022308. PubMed ID: 26382407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear thickening in a model colloidal suspension.
    Delhommelle J; Petravic J
    J Chem Phys; 2005 Aug; 123(7):074707. PubMed ID: 16229610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow electrification in nonaqueous colloidal suspensions, studied with video microscopy.
    Tolpekin VA; van den Ende D; Duits MH; Mellema J
    Langmuir; 2004 Sep; 20(20):8460-7. PubMed ID: 15379461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic self-assembly and directed flow of rotating colloids in microchannels.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031404. PubMed ID: 22060368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rheology of Bimodal Mixtures of Colloidal Particles with Long-Range, Soft Repulsions.
    Hunt WJ; Zukoski CF
    J Colloid Interface Sci; 1999 Feb; 210(2):343-351. PubMed ID: 9929421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.