These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19257584)

  • 1. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 87Sr lattice clock with inaccuracy below 10 -15.
    Boyd MM; Ludlow AD; Blatt S; Foreman SM; Ido T; Zelevinsky T; Ye J
    Phys Rev Lett; 2007 Feb; 98(8):083002. PubMed ID: 17359093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operational Magic Intensity for Sr Optical Lattice Clocks.
    Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2018 Dec; 121(26):263202. PubMed ID: 30636149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate optical lattice clock with 87Sr atoms.
    Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P
    Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.
    Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL
    Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions.
    Carr AW; Saffman M
    Phys Rev Lett; 2016 Oct; 117(15):150801. PubMed ID: 27768352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.
    Yamanaka K; Ohmae N; Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2015 Jun; 114(23):230801. PubMed ID: 26196788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale whispering-gallery-mode light sources with lattice-confined atoms.
    Yu D; Vollmer F
    Sci Rep; 2021 Jul; 11(1):13899. PubMed ID: 34230545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15).
    McFerran JJ; Yi L; Mejri S; Di Manno S; Zhang W; Guéna J; Le Coq Y; Bize S
    Phys Rev Lett; 2012 May; 108(18):183004. PubMed ID: 22681071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.