These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19257675)

  • 1. Interaction between supersonic disintegrating liquid jets and their shock waves.
    Im KS; Cheong SK; Liu X; Wang J; Lai MC; Tate MW; Ercan A; Renzi MJ; Schuette DR; Gruner SM
    Phys Rev Lett; 2009 Feb; 102(7):074501. PubMed ID: 19257675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray imaging of shock waves generated by high-pressure fuel sprays.
    MacPhee AG; Tate MW; Powell CF; Yue Y; Renzi MJ; Ercan A; Narayanan S; Fontes E; Walther J; Schaller J; Gruner SM; Wang J
    Science; 2002 Feb; 295(5558):1261-3. PubMed ID: 11847333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray vision of fuel sprays.
    Wang J
    J Synchrotron Radiat; 2005 Mar; 12(Pt 2):197-207. PubMed ID: 15728972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.
    Declercq NF
    Ultrasonics; 2014 Feb; 54(2):609-13. PubMed ID: 24079915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Simulations of Liquid Jet Explosions and Shock Waves Induced by X-Ray Free-Electron Lasers.
    Chatzimagas L; Hub JS
    Phys Rev Lett; 2023 Sep; 131(13):134003. PubMed ID: 37832003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of high-mach-number 3D hydrodynamic jets at the national ignition facility.
    Blue BE; Weber SV; Glendinning SG; Lanier NE; Woods DT; Bono MJ; Dixit SN; Haynam CA; Holder JP; Kalantar DH; Macgowan BJ; Nikitin AJ; Rekow VV; Van Wonterghem BM; Moses EI; Stry PE; Wilde BH; Hsing WW; Robey HF
    Phys Rev Lett; 2005 Mar; 94(9):095005. PubMed ID: 15783974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries.
    Rigas F; Sklavounos S
    J Hazard Mater; 2005 May; 121(1-3):23-30. PubMed ID: 15885402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field shock formation in noise propagation from a high-power jet aircraft.
    Gee KL; Neilsen TB; Downing JM; James MM; McKinley RL; McKinley RC; Wall AT
    J Acoust Soc Am; 2013 Feb; 133(2):EL88-93. PubMed ID: 23363199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.
    Yuldashev P; Ollivier S; Averiyanov M; Sapozhnikov O; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2010 Dec; 128(6):3321-33. PubMed ID: 21218866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-mode screech frequency prediction formula for circular supersonic jets.
    Gao JH; Li XD
    J Acoust Soc Am; 2010 Mar; 127(3):1251-7. PubMed ID: 20329824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock-wave-induced jetting of micron-size bubbles.
    Ohl CD; Ikink R
    Phys Rev Lett; 2003 May; 90(21):214502. PubMed ID: 12786557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A detailed analysis about penumbra caustics.
    Marchiano R
    J Acoust Soc Am; 2010 Apr; 127(4):2129-40. PubMed ID: 20369994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of an inertial collimation mechanism in nested outflows.
    Yurchak R; Ravasio A; Pelka A; Pikuz S; Falize E; Vinci T; Koenig M; Loupias B; Benuzzi-Mounaix A; Fatenejad M; Tzeferacos P; Lamb DQ; Blackman EG
    Phys Rev Lett; 2014 Apr; 112(15):155001. PubMed ID: 24785042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of shock wave assisted therapeutic devices and establishment of shock wave therapy.
    Hosseini SH; Menezes V; Moosavi-Nejad S; Ohki T; Nakagawa A; Tominaga T; Takayama K
    Minim Invasive Ther Allied Technol; 2006; 15(4):230-40. PubMed ID: 16966137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on effects of plate angle on acoustic waves from supersonic impinging jets.
    Akamine M; Okamoto K; Teramoto S; Tsutsumi S
    J Acoust Soc Am; 2021 Sep; 150(3):1856. PubMed ID: 34598594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Furnace Gas Composition on Characteristics of Supersonic Oxygen Jets in the Converter Steelmaking Process.
    Yao L; Zhu R; Tang Y; Wei G; Dong K
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.
    Yılmaz B; Çiftçi E
    Comput Methods Programs Biomed; 2013 Jun; 110(3):389-98. PubMed ID: 23261077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.
    Marmiroli B; Cacho-Nerin F; Sartori B; Pérez J; Amenitsch H
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):193-202. PubMed ID: 24365936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.