These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19257719)

  • 1. Avalanche prediction in a self-organized pile of beads.
    Ramos O; Altshuler E; Måløy KJ
    Phys Rev Lett; 2009 Feb; 102(7):078701. PubMed ID: 19257719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge effect on the power law distribution of granular avalanches.
    Lorincz KA; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040301. PubMed ID: 17994922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between self-organized criticality and grain aspect ratio in granular piles.
    Denisov DV; Villanueva YY; Lőrincz KA; May S; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051309. PubMed ID: 23004752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittency between avalanche regimes on grain piles.
    Arran MI; Vriend NM
    Phys Rev E; 2018 Jun; 97(6-1):060901. PubMed ID: 30011504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organized criticality in a bead pile.
    Costello RM; Cruz KL; Egnatuk C; Jacobs DT; Krivos MC; Louis TS; Urban RJ; Wagner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041304. PubMed ID: 12786359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.
    Aegerter CM; Günther R; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051306. PubMed ID: 12786145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of a Casimir-like effect in a granular pile with avalanches.
    Denisov DV; Villanueva YY; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061301. PubMed ID: 21797352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casimir-like effect on a granular pile.
    Villanueva YY; Denisov DV; de Man S; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041303. PubMed ID: 21230269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremal dynamics and the approach to the critical state: experiments on a three dimensional pile of rice.
    Aegerter CM; Lorincz KA; Welling MS; Wijngaarden RJ
    Phys Rev Lett; 2004 Feb; 92(5):058702. PubMed ID: 14995349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the driving rate in a two-dimensional rice pile model.
    Lorincz KA; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066110. PubMed ID: 18643339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1/f(alpha) noise from correlations between avalanches in self-organized criticality.
    Davidsen J; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):050101. PubMed ID: 12513453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films.
    Qviller AJ; Qureishy T; Xu Y; Suo H; Mozhaev PB; Hansen JB; Vestgården JI; Johansen TH; Mikheenko P
    Sci Rep; 2020 Mar; 10(1):5641. PubMed ID: 32221378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of self-organized criticality and intermittent turbulence in the solar corona.
    Uritsky VM; Paczuski M; Davila JM; Jones SI
    Phys Rev Lett; 2007 Jul; 99(2):025001. PubMed ID: 17678227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing financial avalanches by random investments.
    Biondo AE; Pluchino A; Rapisarda A; Helbing D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062814. PubMed ID: 24483518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes.
    Caruso F; Pluchino A; Latora V; Vinciguerra S; Rapisarda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):055101. PubMed ID: 17677120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsampling effects in neuronal avalanche distributions recorded in vivo.
    Priesemann V; Munk MH; Wibral M
    BMC Neurosci; 2009 Apr; 10():40. PubMed ID: 19400967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Looking for self-organized critical behavior in avalanches of slightly cohesive powders.
    Quintanilla MA; Valverde JM; Castellanos A; Viturro RE
    Phys Rev Lett; 2001 Nov; 87(19):194301. PubMed ID: 11690413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unified view of avalanche criticality in sheared glasses.
    Oyama N; Mizuno H; Ikeda A
    Phys Rev E; 2021 Jul; 104(1-2):015002. PubMed ID: 34412287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of self-organized criticality in social processes of knowledge creation.
    Tadić B; Dankulov MM; Melnik R
    Phys Rev E; 2017 Sep; 96(3-1):032307. PubMed ID: 29346908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.