These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. TeV neutrinos and GeV photons from shock breakout in supernovae. Waxman E; Loeb A Phys Rev Lett; 2001 Aug; 87(7):071101. PubMed ID: 11497877 [TBL] [Abstract][Full Text] [Related]
24. Neutrinos from supernovae as a trigger for gravitational wave search. Pagliaroli G; Vissani F; Coccia E; Fulgione W Phys Rev Lett; 2009 Jul; 103(3):031102. PubMed ID: 19659263 [TBL] [Abstract][Full Text] [Related]
25. No collective neutrino flavor conversions during the supernova accretion phase. Chakraborty S; Fischer T; Mirizzi A; Saviano N; Tomàs R Phys Rev Lett; 2011 Oct; 107(15):151101. PubMed ID: 22107280 [TBL] [Abstract][Full Text] [Related]
26. Diffuse neutrino background from past core collapse supernovae. Ando S; Ekanger N; Horiuchi S; Koshio Y Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(10):460-479. PubMed ID: 38072453 [TBL] [Abstract][Full Text] [Related]
27. Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay. Ge SF; Kong CF; Smirnov AY Phys Rev Lett; 2024 Sep; 133(12):121802. PubMed ID: 39373433 [TBL] [Abstract][Full Text] [Related]
28. High energy neutrinos from gamma-ray bursts with precursor supernovae. Razzaque S; Mészáros P; Waxman E Phys Rev Lett; 2003 Jun; 90(24):241103. PubMed ID: 12857183 [TBL] [Abstract][Full Text] [Related]
29. Coherent development of neutrino flavor in the supernova environment. Duan H; Fuller GM; Carlson J; Qian YZ Phys Rev Lett; 2006 Dec; 97(24):241101. PubMed ID: 17280265 [TBL] [Abstract][Full Text] [Related]
30. Instability in the dense supernova neutrino gas with flavor-dependent angular distributions. Mirizzi A; Serpico PD Phys Rev Lett; 2012 Jun; 108(23):231102. PubMed ID: 23003940 [TBL] [Abstract][Full Text] [Related]
31. Long gamma-ray bursts and core-collapse supernovae have different environments. Fruchter AS; Levan AJ; Strolger L; Vreeswijk PM; Thorsett SE; Bersier D; Burud I; Castro Cerón JM; Castro-Tirado AJ; Conselice C; Dahlen T; Ferguson HC; Fynbo JP; Garnavich PM; Gibbons RA; Gorosabel J; Gull TR; Hjorth J; Holland ST; Kouveliotou C; Levay Z; Livio M; Metzger MR; Nugent PE; Petro L; Pian E; Rhoads JE; Riess AG; Sahu KC; Smette A; Tanvir NR; Wijers RA; Woosley SE Nature; 2006 May; 441(7092):463-8. PubMed ID: 16688183 [TBL] [Abstract][Full Text] [Related]
32. Flavor oscillations in the supernova hot bubble region: nonlinear effects of neutrino background. Pastor S; Raffelt G Phys Rev Lett; 2002 Nov; 89(19):191101. PubMed ID: 12443110 [TBL] [Abstract][Full Text] [Related]
33. Technique for direct eV-scale measurements of the Mu and tau neutrino masses using supernova neutrinos. Beacom JF; Boyd RN; Mezzacappa A Phys Rev Lett; 2000 Oct; 85(17):3568-71. PubMed ID: 11030952 [TBL] [Abstract][Full Text] [Related]
35. Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. Most ER; Papenfort LJ; Dexheimer V; Hanauske M; Schramm S; Stöcker H; Rezzolla L Phys Rev Lett; 2019 Feb; 122(6):061101. PubMed ID: 30822043 [TBL] [Abstract][Full Text] [Related]
36. A Novel multidimensional Boltzmann neutrino transport scheme for core-collapse supernovae. Chan C; Müller B Mon Not R Astron Soc; 2020 Aug; 496(2):2000-2020. PubMed ID: 32624624 [TBL] [Abstract][Full Text] [Related]
37. The association of GRB 060218 with a supernova and the evolution of the shock wave. Campana S; Mangano V; Blustin AJ; Brown P; Burrows DN; Chincarini G; Cummings JR; Cusumano G; Della Valle M; Malesani D; Mészáros P; Nousek JA; Page M; Sakamoto T; Waxman E; Zhang B; Dai ZG; Gehrels N; Immler S; Marshall FE; Mason KO; Moretti A; O'Brien PT; Osborne JP; Page KL; Romano P; Roming PW; Tagliaferri G; Cominsky LR; Giommi P; Godet O; Kennea JA; Krimm H; Angelini L; Barthelmy SD; Boyd PT; Palmer DM; Wells AA; White NE Nature; 2006 Aug; 442(7106):1008-10. PubMed ID: 16943830 [TBL] [Abstract][Full Text] [Related]