These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19258685)

  • 1. Continuous depth-of-interaction encoding using phosphor-coated scintillators.
    Du H; Yang Y; Glodo J; Wu Y; Shah K; Cherry SR
    Phys Med Biol; 2009 Mar; 54(6):1757-71. PubMed ID: 19258685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing properties of phosphor-coated polished LSO crystals.
    Schmall JP; Roncali E; Berg E; Viswanath V; Du J; Cherry SR
    Phys Med Biol; 2014 Aug; 59(15):N139-51. PubMed ID: 25047008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculations of PET coincidence timing: single and double-ended readout.
    Derenzo SE; Choong WS; Moses WW
    Phys Med Biol; 2015 Sep; 60(18):7309-38. PubMed ID: 26350162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study on the imaging performance of powder Lu2SiO5:Ce phosphor screens under x-ray excitation: comparison with Gd2O2S:Tb screens.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2007 May; 34(5):1724-33. PubMed ID: 17555254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of time-of-flight PET with double-ended readout: calibration, coincidence resolving times and statistical lower bounds.
    Derenzo SE
    Phys Med Biol; 2017 May; 62(9):3828-3858. PubMed ID: 28327464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.
    Gundacker S; Auffray E; Pauwels K; Lecoq P
    Phys Med Biol; 2016 Apr; 61(7):2802-37. PubMed ID: 26982798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation.
    Roncali E; Schmall JP; Viswanath V; Berg E; Cherry SR
    Phys Med Biol; 2014 Apr; 59(8):2023-39. PubMed ID: 24694727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.
    Wu H; Tai YC
    Phys Med Biol; 2011 Sep; 56(17):5583-98. PubMed ID: 21828901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of long rectangular semi-monolithic scintillator PET detectors.
    Zhang X; Wang X; Ren N; Hu B; Ding B; Kuang Z; Wu S; Sang Z; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2019 Apr; 46(4):1608-1619. PubMed ID: 30723932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.
    Song TY; Wu H; Komarov S; Siegel SB; Tai YC
    Phys Med Biol; 2010 May; 55(9):2573-87. PubMed ID: 20393236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2007 Jul; 52(13):3753-72. PubMed ID: 17664575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PET detector prototype based on digital SiPMs and GAGG scintillators.
    Schneider FR; Shimazoe K; Somlai-Schweiger I; Ziegler SI
    Phys Med Biol; 2015 Feb; 60(4):1667-79. PubMed ID: 25633017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy spectra due to the intrinsic radiation of LYSO/LSO scintillators for a wide range of crystal sizes.
    Domínguez-Jiménez DY; Alva-Sánchez H
    Med Phys; 2021 Apr; 48(4):1596-1607. PubMed ID: 33475160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out.
    Dokhale PA; Silverman RW; Shah KS; Grazioso R; Farrell R; Glodo J; McClish MA; Entine G; Tran VH; Cherry SR
    Phys Med Biol; 2004 Sep; 49(18):4293-304. PubMed ID: 15509066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear least-squares modeling of 3D interaction position in a monolithic scintillator block.
    Li Z; Wedrowski M; Bruyndonckx P; Vandersteen G
    Phys Med Biol; 2010 Nov; 55(21):6515-32. PubMed ID: 20959686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.
    Kuang Z; Sang Z; Wang X; Fu X; Ren N; Zhang X; Zheng Y; Yang Q; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2018 Feb; 45(2):613-621. PubMed ID: 29222959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.
    Pichler BJ; Swann BK; Rochelle J; Nutt RE; Cherry SR; Siegel SB
    Phys Med Biol; 2004 Sep; 49(18):4305-19. PubMed ID: 15509067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.
    Yamamoto S
    Radiol Phys Technol; 2013 Jul; 6(2):281-6. PubMed ID: 23271446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Fluorophore Coated Polycrystalline Ceramic LSO:Ce Scintillators for X-ray Bioimaging.
    Burdette MK; Bandera YP; Zhang E; Trofimov A; Dickey A; Foulger I; Kolis JW; Cannon KE; Bartley AF; Dobrunz LE; Bolding MS; McMahon L; Foulger SH
    Langmuir; 2019 Jan; 35(1):171-182. PubMed ID: 30518207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving sub-100 ps time-of-flight resolution in thick LSO positron emission tomography while reducing system cost: a Monte Carlo study.
    Walrand S; Hesse M; Jamar F
    Phys Med Biol; 2020 Oct; 65(20):205009. PubMed ID: 33085649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.