These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19259141)

  • 1. A matrix-free algorithm for multiple wavelength fluorescence tomography.
    Zacharopoulos AD; Svenmarker P; Axelsson J; Schweiger M; Arridge SR; Andersson-Engels S
    Opt Express; 2009 Mar; 17(5):3025-35. PubMed ID: 19259141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.
    Yang CL; Wei HY; Adler A; Soleimani M
    Physiol Meas; 2013 Jun; 34(6):645-58. PubMed ID: 23719094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gauss-Newton method for image reconstruction in diffuse optical tomography.
    Schweiger M; Arridge SR; Nissilä I
    Phys Med Biol; 2005 May; 50(10):2365-86. PubMed ID: 15876673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient ptychographic phase retrieval via a matrix-free Levenberg-Marquardt algorithm.
    Kandel S; Maddali S; Nashed YSG; Hruszkewycz SO; Jacobsen C; Allain M
    Opt Express; 2021 Jul; 29(15):23019-23055. PubMed ID: 34614577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method.
    Zhang X
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8216():82160O. PubMed ID: 24027610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast image reconstruction in fluorescence optical tomography using data compression.
    Rudge TJ; Soloviev VY; Arridge SR
    Opt Lett; 2010 Mar; 35(5):763-5. PubMed ID: 20195345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction.
    Eames ME; Dehghani H
    Opt Express; 2008 Oct; 16(22):17780-91. PubMed ID: 18958060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction.
    Cao X; Wang X; Zhang B; Liu F; Luo J; Bai J
    Biomed Opt Express; 2013 Jan; 4(1):1-14. PubMed ID: 23304643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated gradient based diffuse optical tomographic image reconstruction.
    Biswas SK; Rajan K; Vasu RM
    Med Phys; 2011 Jan; 38(1):539-47. PubMed ID: 21361221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence molecular tomography using a two-step three-dimensional shape-based reconstruction with graphics processing unit acceleration.
    Wang D; Qiao H; Song X; Fan Y; Li D
    Appl Opt; 2012 Dec; 51(36):8731-44. PubMed ID: 23262613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient Jacobian reduction method for diffuse optical image reconstruction.
    Eames ME; Pogue BW; Yalavarthy PK; Dehghani H
    Opt Express; 2007 Nov; 15(24):15908-19. PubMed ID: 19550878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography.
    Biswas SK; Kanhirodan R; Vasu RM; Roy D
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):1017-26. PubMed ID: 22673433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-contact fluorescence optical tomography with scanning patterned illumination.
    Joshi A; Bangerth W; Sevick-Muraca EM
    Opt Express; 2006 Jul; 14(14):6516-34. PubMed ID: 19516829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image reconstruction for synchronous data acquisition in fluorescence molecular tomography.
    Zhang X; Liu F; Zuo S; Bai J; Luo J
    J Xray Sci Technol; 2015; 23(4):463-72. PubMed ID: 26410657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
    Li Y; Matej S; Metzler SD
    Med Phys; 2014 Dec; 41(12):121912. PubMed ID: 25471972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal Component Geostatistical Approach for large-dimensional inverse problems.
    Kitanidis PK; Lee J
    Water Resour Res; 2014 Jul; 50(7):5428-5443. PubMed ID: 25558113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography.
    Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS
    Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient numerical method for general L(p) regularization in fluorescence molecular tomography.
    Baritaux JC; Hassler K; Unser M
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1075-87. PubMed ID: 20236875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient inversion of multiple-scattering model for optical diffraction tomography.
    Soubies E; Pham TA; Unser M
    Opt Express; 2017 Sep; 25(18):21786-21800. PubMed ID: 29041472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use?
    Ning L; Laun F; Gur Y; DiBella EV; Deslauriers-Gauthier S; Megherbi T; Ghosh A; Zucchelli M; Menegaz G; Fick R; St-Jean S; Paquette M; Aranda R; Descoteaux M; Deriche R; O'Donnell L; Rathi Y
    Med Image Anal; 2015 Dec; 26(1):316-31. PubMed ID: 26606457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.