These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19259167)

  • 1. Higher order finite-difference frequency domain analysis of 2-D photonic crystals with curved dielectric interfaces.
    Chiang YC
    Opt Express; 2009 Mar; 17(5):3305-15. PubMed ID: 19259167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals.
    Yu CP; Chang HC
    Opt Express; 2004 Apr; 12(7):1397-408. PubMed ID: 19474962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method.
    Chiang PJ; Yu CP; Chang HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026703. PubMed ID: 17358447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities.
    Andonegui I; Garcia-Adeva AJ
    Opt Express; 2013 Feb; 21(4):4072-92. PubMed ID: 23481942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers.
    Yu CP; Chang HC
    Opt Express; 2004 Dec; 12(25):6165-77. PubMed ID: 19488261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation.
    Lin MC; Jao RF
    Opt Express; 2007 Jan; 15(1):207-18. PubMed ID: 19532236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2012 Feb; 37(3):326-8. PubMed ID: 22297341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods.
    Hsu SM; Chang HC
    Opt Express; 2008 Dec; 16(26):21355-68. PubMed ID: 19104565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflection minimization at two-dimensional photonic crystal interfaces.
    Lee SG; Choi JS; Kim JE; Park HY; Kee CS
    Opt Express; 2008 Mar; 16(6):4270-7. PubMed ID: 18542522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system.
    Xiao J; Sun X
    Opt Express; 2012 Sep; 20(19):21583-97. PubMed ID: 23037277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method.
    Hirono T; Yoshikuni Y
    Appl Opt; 2007 Mar; 46(9):1514-24. PubMed ID: 17334444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral element method for band structures of two-dimensional anisotropic photonic crystals.
    Luo M; Liu QH; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026705. PubMed ID: 19391872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis.
    Chiou YP; Du CH
    Opt Express; 2010 Mar; 18(5):4088-102. PubMed ID: 20389423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures.
    Chung SH; Yang JY
    Appl Opt; 2011 Dec; 50(36):6657-66. PubMed ID: 22193196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.