These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19259173)

  • 1. Fabrication of periodic nanovein structures by holography lithography technique.
    Lai ND; Huang YD; Lin JH; Do DB; Hsu CC
    Opt Express; 2009 Mar; 17(5):3362-9. PubMed ID: 19259173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique.
    Lai ND; Liang WP; Lin JH; Hsu CC; Lin CH
    Opt Express; 2005 Nov; 13(23):9605-11. PubMed ID: 19503163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques.
    Lai ND; Liang W; Lin J; Hsu C
    Opt Express; 2005 Jul; 13(14):5331-7. PubMed ID: 19498526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of nano/micro dual-periodic structures by multi-beam evanescent wave interference lithography using spatial beats.
    Masui S; Torii Y; Michihata M; Takamasu K; Takahashi S
    Opt Express; 2019 Oct; 27(22):31522-31531. PubMed ID: 31684386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Icosahedral quasicrystals for visible wavelengths by optical interference holography.
    Xu J; Ma R; Wang X; Tam WY
    Opt Express; 2007 Apr; 15(7):4287-95. PubMed ID: 19532673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography.
    Behera S; Kumar M; Joseph J
    Opt Lett; 2016 Apr; 41(8):1893-6. PubMed ID: 27082372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal.
    Lin Y; Harb A; Rodriguez D; Lozano K; Xu D; Chen KP
    Opt Express; 2008 Jun; 16(12):9165-72. PubMed ID: 18545628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique.
    Lai ND; Lin JH; Huang YY; Hsu CC
    Opt Express; 2006 Oct; 14(22):10746-52. PubMed ID: 19529483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-beam interference lithography methodology.
    Stay JL; Burrow GM; Gaylord TK
    Rev Sci Instrum; 2011 Feb; 82(2):023115. PubMed ID: 21361581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application Progress of Holographic Lithgraphy in Fabrication of Micro-Nano Photonic Structures].
    Wang X; Lü H; Zhao QL; Zhang SY; Tam WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3461-9. PubMed ID: 30198243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates.
    Chanda D; Abolghasemi L; Herman PR
    Opt Express; 2006 Sep; 14(19):8568-77. PubMed ID: 19529236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.
    George D; Lutkenhaus J; Lowell D; Moazzezi M; Adewole M; Philipose U; Zhang H; Poole ZL; Chen KP; Lin Y
    Opt Express; 2014 Sep; 22(19):22421-31. PubMed ID: 25321713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the complete photonic bandgap of two-dimensional photonic crystal.
    Chau YF; Wu FL; Jiang ZH; Li HY
    Opt Express; 2011 Mar; 19(6):4862-7. PubMed ID: 21445122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography.
    Mao W; Liang G; Zou H; Wang H
    Opt Lett; 2006 Jun; 31(11):1708-10. PubMed ID: 16688269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of photonic crystals for the visible spectrum by holographic lithography.
    Campbell M; Sharp DN; Harrison MT; Denning RG; Turberfield AJ
    Nature; 2000 Mar; 404(6773):53-6. PubMed ID: 10716437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8.
    Misawa H; Kondo T; Juodkazis S; Mizeikis V; Matsuo S
    Opt Express; 2006 Aug; 14(17):7943-53. PubMed ID: 19529163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional photonic quasicrystals by single beam computer-generated holography.
    Zito G; Piccirillo B; Santamato E; Marino A; Tkachenko V; Abbate G
    Opt Express; 2008 Apr; 16(8):5164-70. PubMed ID: 18542617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.