These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19259204)

  • 1. Array-based optical nanolithography using optically trapped microlenses.
    McLeod E; Arnold CB
    Opt Express; 2009 Mar; 17(5):3640-50. PubMed ID: 19259204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subwavelength direct-write nanopatterning using optically trapped microspheres.
    McLeod E; Arnold CB
    Nat Nanotechnol; 2008 Jul; 3(7):413-7. PubMed ID: 18654565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength.
    Fan D; Wang L; Ekinci Y
    Sci Rep; 2016 Aug; 6():31301. PubMed ID: 27501749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated optical phased arrays for quasi-Bessel-beam generation.
    Notaros J; Poulton CV; Byrd MJ; Raval M; Watts MR
    Opt Lett; 2017 Sep; 42(17):3510-3513. PubMed ID: 28957075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon planar-apertured probe array for high-density near-field optical storage.
    Lee MB; Kourogi M; Yatsui T; Tsutsui K; Atoda N; Ohtsu M
    Appl Opt; 1999 Jun; 38(16):3566-71. PubMed ID: 18319959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bessel and conical beams and approximation with annular arrays.
    Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):712-8. PubMed ID: 18244222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis.
    Carruthers AE; Walker JS; Casey A; Orr-Ewing AJ; Reid JP
    Phys Chem Chem Phys; 2012 May; 14(19):6741-8. PubMed ID: 22476508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel scanning-optical nanoscopy with optically confined probes.
    Tsai HY; Thomas SW; Menon R
    Opt Express; 2010 Jul; 18(15):16014-24. PubMed ID: 20720986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positioning Accuracy in Holographic Optical Traps.
    Català-Castro F; Martín-Badosa E
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34063449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.
    Wen X; Datta A; Traverso LM; Pan L; Xu X; Moon EE
    Sci Rep; 2015 Nov; 5():16192. PubMed ID: 26525906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdisplacement sensor using an optically trapped microprobe based on the interference scale.
    Michihata M; Hayashi T; Nakai D; Takaya Y
    Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single ion as a nanoscopic probe of an optical field.
    Guthöhrlein GR; Keller M; Hayasaka K; Lange W; Walther H
    Nature; 2001 Nov; 414(6859):49-51. PubMed ID: 11689937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.
    Cotterell MI; Mason BJ; Carruthers AE; Walker JS; Orr-Ewing AJ; Reid JP
    Phys Chem Chem Phys; 2014 Feb; 16(5):2118-28. PubMed ID: 24346588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.
    Gan Z; Cao Y; Evans RA; Gu M
    Nat Commun; 2013; 4():2061. PubMed ID: 23784312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning Probe Photonic Nanojet Lithography.
    Jacassi A; Tantussi F; Dipalo M; Biagini C; Maccaferri N; Bozzola A; De Angelis F
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32386-32393. PubMed ID: 28853854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica.
    Luo Z; Duan J; Guo C
    Opt Lett; 2017 Jun; 42(12):2358-2361. PubMed ID: 28614309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flying plasmonic lens in the near field for high-speed nanolithography.
    Srituravanich W; Pan L; Wang Y; Sun C; Bogy DB; Zhang X
    Nat Nanotechnol; 2008 Dec; 3(12):733-7. PubMed ID: 19057593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.