These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19259212)

  • 21. Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion.
    Mitrofanov O; Harrington JA
    Opt Express; 2010 Feb; 18(3):1898-903. PubMed ID: 20174017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics.
    Jágerská J; Le Thomas N; Houdré R; Bolten J; Moormann C; Wahlbrink T; Ctyroký J; Waldow M; Först M
    Opt Lett; 2007 Sep; 32(18):2723-5. PubMed ID: 17873948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides.
    Čtyroký J; Gonzalo Wangüemert-Pérez J; Kwiecien P; Richter I; Litvik J; Schmid JH; Molina-Fernández Í; Ortega-Moñux A; Dado M; Cheben P
    Opt Express; 2018 Jan; 26(1):179-194. PubMed ID: 29328290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy.
    Robinson JT; Preble SF; Lipson M
    Opt Express; 2006 Oct; 14(22):10588-95. PubMed ID: 19529461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals.
    Avendaño CG; Reyes A
    Phys Rev E; 2017 Mar; 95(3-1):032703. PubMed ID: 28415267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near IR stationary wave Fourier transform lambda meter in lithium niobate: multiplexing and improving optical sampling using spatially shifted nanogroove antenna.
    Bonduelle M; Heras I; Morand A; Ulliac G; Salut R; Courjal N; Martin G
    Appl Opt; 2021 Jul; 60(19):D83-D92. PubMed ID: 34263830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated Photonic Nanofences: Combining Subwavelength Waveguides with an Enhanced Evanescent Field for Sensing Applications.
    Cadarso VJ; Llobera A; Puyol M; Schift H
    ACS Nano; 2016 Jan; 10(1):778-85. PubMed ID: 26615837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General recipe for flatbands in photonic crystal waveguides.
    Khayam O; Benisty H
    Opt Express; 2009 Aug; 17(17):14634-48. PubMed ID: 19687942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices.
    Mao H; Wang J; Yu K; Zhu Z
    Appl Opt; 2010 Dec; 49(34):6597-601. PubMed ID: 21124536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides.
    Dhakal A; Raza A; Peyskens F; Subramanian AZ; Clemmen S; Le Thomas N; Baets R
    Opt Express; 2015 Oct; 23(21):27391-404. PubMed ID: 26480401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The significance of the evanescent spectrum in structure-waveguide interaction problems.
    Tsouvalas A; van Dalen KN; Metrikine AV
    J Acoust Soc Am; 2015 Oct; 138(4):2574-88. PubMed ID: 26520340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direction-dependent optical modes in nanoscale silicon waveguides.
    Robinson JT; Lipson M
    Opt Express; 2011 Sep; 19(19):18380-92. PubMed ID: 21935206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disorder effects in subwavelength grating metamaterial waveguides.
    Ortega-Moñux A; Čtyroký J; Cheben P; Schmid JH; Wang S; Molina-Fernández Í; Halir R
    Opt Express; 2017 May; 25(11):12222-12236. PubMed ID: 28786581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soliton control and bloch-wave filtering in periodic photonic lattices.
    Sukhorukov AA; Kivshar YS
    Opt Lett; 2005 Jul; 30(14):1849-51. PubMed ID: 16092366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-field characterization of planar photonic-crystal-waveguide structures.
    Bozhevolnyi SI; Volkov VS
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):757-69. PubMed ID: 15306492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photonic crystal waveguides with semi-slow light and tailored dispersion properties.
    Frandsen LH; Lavrinenko AV; Fage-Pedersen J; Borel PI
    Opt Express; 2006 Oct; 14(20):9444-50. PubMed ID: 19529330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evanescent modes in out-of-plane band structure for two-dimensional photonic crystals.
    Blad J; Sudbø AS
    Opt Express; 2009 Apr; 17(9):7170-85. PubMed ID: 19399093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iterative high-resolution wavenumber inversion applied to broadband acoustic data.
    Philippe FD; Roux P; Cassereau D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2306-11. PubMed ID: 18986878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method of calculating local dispersion in arbitrary photonic crystal waveguides.
    Dastmalchi B; Mohtashami A; Hingerl K; Zarbakhsh J
    Opt Lett; 2007 Oct; 32(20):2915-7. PubMed ID: 17938651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory for the measurements of dispersion characteristics in waveguiding structures with a scanning near-field optical microscope.
    Hoekstra HJ; Klunder DJ; Driessen A
    J Opt Soc Am A Opt Image Sci Vis; 2004 Feb; 21(2):280-7. PubMed ID: 14763771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.