These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 192594)

  • 1. Investigation of sites phosphorylated in histone H5 by protein kinase from pig brain.
    Kurochkin SN; Andreeva NG; Gasaryan KG; Severin ES; Kurchatov IV
    FEBS Lett; 1977 Apr; 76(1):112-4. PubMed ID: 192594
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylated sites of calf thymus H2B histone by adenosine 3':5'-monophosphate-dependent protein kinase from bovine cerebellum.
    Kuroda Y; Hashimoto E; Nishizuka Y
    Biochem Biophys Res Commun; 1976 Jul; 71(2):629-35. PubMed ID: 183776
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphorylation of calf thymus H1 histone by calcium-activated, phospholipid-dependent protein kinase.
    Iwasa Y; Takai Y; Kikkawa U; Nishizuka Y
    Biochem Biophys Res Commun; 1980 Sep; 96(1):180-7. PubMed ID: 6254505
    [No Abstract]   [Full Text] [Related]  

  • 4. Sites in histone H1 selectively phosphorylated by guanosine 3':5'-monophosphate-dependent protein kinase.
    Zeilig CE; Langan TA; Glass DB
    J Biol Chem; 1981 Jan; 256(2):994-1001. PubMed ID: 6256376
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the sites in histones phosphorylated by adenosine 3':5'-monophosphate-dependent and guanosine 3':5'-monophosphate-dependent protein kinases.
    Hashimoto E; Takeda M; Nishizuka Y; Hamana K; Iwai K
    J Biol Chem; 1976 Oct; 251(20):6287-93. PubMed ID: 185207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a histidine residue in the active site of cyclic AMP-dependent histone kinase.
    Kochetkov SN; Bulargina TV; Sashchenko LP; Severin ES
    FEBS Lett; 1976 Dec; 71(2):212-4. PubMed ID: 12004
    [No Abstract]   [Full Text] [Related]  

  • 7. [Phosphorylation of lysine-rich histones by swine brain histokinase].
    Shliapnikov SV; Arutiunian AA; Kurochkin SN; Memelova LV; Nesterova MV
    Mol Biol (Mosk); 1976; 10(2):360-6. PubMed ID: 181671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic activity of guanosine 3',5'-monophosphate-dependent protein kinase similar to adenosine 3',5'-monophosphate-dependent protein kinase. I. Phosphorylation of histone fractions.
    Yamamoto M; Takai Y; Hashimoto E; Nishizuka Y
    J Biochem; 1977 Jun; 81(6):1857-62. PubMed ID: 197069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of distinct regions of f1 histone. Relationship to the cell cycle.
    Hohmann P; Tobey RA; Gurley LR
    J Biol Chem; 1976 Jun; 251(12):3685-92. PubMed ID: 180006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of action of cyclic AMP-dependent histone kinase. Substrate specificity of the catalytic enzyme unit].
    Kochetkov SN; Khachatrian LL; Bagirov EM; Sashchenko LP; Severin ES
    Biokhimiia; 1978 Jan; 43(1):150-5. PubMed ID: 203340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The site of histone H2b phosphorylated by a cyclic nucleotide independent histone kinase.
    Romhányi T; Seprödi J; Antoni F; Nikolics K; Mészáros G; Faragó A
    Biochim Biophys Acta; 1982 Feb; 701(1):57-62. PubMed ID: 6275900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone kinase activities in normal and transformed mouse cells.
    Sykes DE; Hohmann P
    Cancer Biochem Biophys; 1985 Feb; 7(4):317-23. PubMed ID: 2983880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study by the spin-label method of relaxation properties of protein kinase, its subunits and the catalytic subunit--histone H1 complex].
    Timofeev VP; Bagirov EM; Gabibov AG; Kochetkov SN
    Mol Biol (Mosk); 1982; 16(6):1263-70. PubMed ID: 6296665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain histone kinase: the structure, the substrate specificity and the mechanism of action.
    Severin ES; Nesterova MV; Gulyaev NN; ShlyAPNIKOV SV
    Adv Enzyme Regul; 1976; 14():407-44. PubMed ID: 184700
    [No Abstract]   [Full Text] [Related]  

  • 15. In vitro phosphorylation of the tumor suppressor gene RB protein by mitosis-specific histone H1 kinase.
    Taya Y; Yasuda H; Kamijo M; Nakaya K; Nakamura Y; Ohba Y; Nishimura S
    Biochem Biophys Res Commun; 1989 Oct; 164(1):580-6. PubMed ID: 2553023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulatory effect of histones on phosphorylation of nuclear phosphoproteins.
    Kuroda Y; Hashimoto E; Nishizuka Y
    J Biochem; 1977 Oct; 82(4):1167-72. PubMed ID: 200606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical principles of cAMP-dependent protein phosphorylation. Catalysis of phosphoryl group transfer to nucleophilic agents.
    Kochetkov SN; Gabibov AG; Lukashina TN
    FEBS Lett; 1984 Jul; 173(1):179-84. PubMed ID: 6086396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin and glucagon regulation of protein phosphorylation in isolated hepatocytes. Persistence, reversibility, and concentration dependence of hormonal effect. Evidence for common phosphorylation sites for both hormones on the Mr = 46,000 protein.
    Le Cam A
    J Biol Chem; 1982 Jul; 257(14):8376-89. PubMed ID: 6282882
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of highly phosphorylated subcomponents of rat thymus H1 histone.
    Langan TA
    J Biol Chem; 1982 Dec; 257(24):14835-46. PubMed ID: 6294083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorlyation of H1 and H5 histones by cyclic AMP-dependent protein kinase reduces DNA binding.
    Fasy TM; Inoue A; Johnson EM; Allfrey VG
    Biochim Biophys Acta; 1979 Sep; 564(2):322-34. PubMed ID: 226145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.