These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19259489)
21. Effect of Soil Depth and Moisture on the Vertical Distribution of Steinernema riobrave (Nematoda: Steinernematidae). Gouge DH; Smith KA; Lee LL; Henneberry TJ J Nematol; 2000 Jun; 32(2):223-8. PubMed ID: 19270970 [TBL] [Abstract][Full Text] [Related]
22. Susceptibility of the boll weevil to Steinernema riobrave and other entomopathogenic nematodes. Enrique Cabanillas H J Invertebr Pathol; 2003 Mar; 82(3):188-97. PubMed ID: 12676555 [TBL] [Abstract][Full Text] [Related]
23. Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2006 May; 92(1):11-22. PubMed ID: 16563427 [TBL] [Abstract][Full Text] [Related]
24. Molecular Identification of Entomopathogenic Nematode Isolates from the Philippines and their Biological Control Potential Against Lepidopteran Pests of Corn. Caoili BL; Latina RA; Sandoval RFC; Orajay JI J Nematol; 2018 Sep; 50(2):99-110. PubMed ID: 30451431 [TBL] [Abstract][Full Text] [Related]
25. Hydraulic Lift Increases Herbivory by Diaprepes abbreviatus Larvae and Persistence of Steinernema riobrave in Dry Soil. Duncan LW; McCoy CW J Nematol; 2001 Jun; 33(2-3):142-6. PubMed ID: 19266011 [TBL] [Abstract][Full Text] [Related]
26. From Augmentation to Conservation of Entomopathogenic Nematodes: Trophic Cascades, Habitat Manipulation and Enhanced Biological Control of Diaprepes abbreviatus Root Weevils in Florida Citrus Groves. Stuart RJ; El-Borai FE; Duncan LW J Nematol; 2008 Jun; 40(2):73-84. PubMed ID: 19259523 [TBL] [Abstract][Full Text] [Related]
27. A draft genome of Baniya A; Huguet-Tapia JC; DiGennaro P J Nematol; 2020; 52():1-4. PubMed ID: 32678527 [TBL] [Abstract][Full Text] [Related]
28. Control of the Oriental Fruit Moth, Grapholita molesta, Using Entomopathogenic Nematodes in Laboratory and Fruit Bin Assays. Riga E; Lacey LA; Guerra N; Headrick HL J Nematol; 2006 Mar; 38(1):168-71. PubMed ID: 19259443 [TBL] [Abstract][Full Text] [Related]
29. Divergent thermal specialisation of two South African entomopathogenic nematodes. Hill MP; Malan AP; Terblanche JS PeerJ; 2015; 3():e1023. PubMed ID: 26157609 [TBL] [Abstract][Full Text] [Related]
30. Biocontrol of Wireworms (Coleoptera: Elateridae) Using Entomopathogenic Nematodes: The Impact of Infected Host Cadaver Application and Soil Characteristics. Sandhi RK; Shapiro-Ilan D; Ivie M; Reddy GVP Environ Entomol; 2021 Aug; 50(4):868-877. PubMed ID: 34032820 [TBL] [Abstract][Full Text] [Related]
31. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control. Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923 [TBL] [Abstract][Full Text] [Related]
32. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
33. Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Strong DR; Kaya HK; Whipple AV; Child AL; Kraig S; Bondonno M; Dyer K; Maron JL Oecologia; 1996 Oct; 108(1):167-173. PubMed ID: 28307747 [TBL] [Abstract][Full Text] [Related]
34. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in Viti Levu, Fiji Islands. Brodie G J Nematol; 2020; 52():1-17. PubMed ID: 32191017 [TBL] [Abstract][Full Text] [Related]
36. Directional movement of entomopathogenic nematodes in response to electrical field: effects of species, magnitude of voltage, and infective juvenile age. Shapiro-Ilan DI; Lewis EE; Campbell JF; Kim-Shapiro DB J Invertebr Pathol; 2012 Jan; 109(1):34-40. PubMed ID: 21945052 [TBL] [Abstract][Full Text] [Related]
37. Diversity and phylogenetic relationships of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the Sky Islands of Southern Arizona. Stock SP; Gress JC J Invertebr Pathol; 2006 Jun; 92(2):66-72. PubMed ID: 16554068 [TBL] [Abstract][Full Text] [Related]
38. Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Ebssa L; Koppenhöfer AM Pest Manag Sci; 2012 Jun; 68(6):947-57. PubMed ID: 22344709 [TBL] [Abstract][Full Text] [Related]
39. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513 [TBL] [Abstract][Full Text] [Related]
40. Seasonal dynamics of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis as a response to abiotic factors and abundance of insect hosts. Půza V; Mrácek Z J Invertebr Pathol; 2005 Jun; 89(2):116-22. PubMed ID: 15893761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]