BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19259625)

  • 1. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast.
    Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ
    Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing.
    Stringari C; Abdeladim L; Malkinson G; Mahou P; Solinas X; Lamarre I; Brizion S; Galey JB; Supatto W; Legouis R; Pena AM; Beaurepaire E
    Sci Rep; 2017 Jun; 7(1):3792. PubMed ID: 28630487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual hematoxylin and eosin histopathology using simultaneous photoacoustic remote sensing and scattering microscopy.
    Restall BS; Haven NJM; Kedarisetti P; Martell MT; Cikaluk BD; Silverman S; Peiris L; Deschenes J; Zemp RJ
    Opt Express; 2021 Apr; 29(9):13864-13875. PubMed ID: 33985114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD(P)H fluorescence lifetime measurements in fixed biological tissues.
    Chacko JV; Eliceiri KW
    Methods Appl Fluoresc; 2019 Oct; 7(4):044005. PubMed ID: 31553966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.
    Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N
    Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slide-free imaging of hematoxylin-eosin stained whole-mount tissues using combined third-harmonic generation and three-photon fluorescence microscopy.
    Sun CK; Kao CT; Wei ML; Chia SH; Kärtner FX; Ivanov A; Liao YH
    J Biophotonics; 2019 May; 12(5):e201800341. PubMed ID: 30636033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer.
    Provenzano PP; Rueden CT; Trier SM; Yan L; Ponik SM; Inman DR; Keely PJ; Eliceiri KW
    J Biomed Opt; 2008; 13(3):031220. PubMed ID: 18601544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.
    Skala MC; Riching KM; Bird DK; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; Keely PJ; Ramanujam N
    J Biomed Opt; 2007; 12(2):024014. PubMed ID: 17477729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast tissue analysis using a clinically compatible combined time-resolved fluorescence and diffuse reflectance (TRF-DR) system.
    Dao E; Gohla G; Williams P; Lovrics P; Badr F; Fang Q; Farrell T; Farquharson M
    Lasers Surg Med; 2023 Oct; 55(8):769-783. PubMed ID: 37526280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic Histopathological Methods and Breast Lesion Types for Research.
    Ouyang N; Wang L
    Methods Mol Biol; 2016; 1406():3-9. PubMed ID: 26820941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton excitation of autofluorescence for microscopy of glioma tissue.
    Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A
    Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.