These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 19259658)
1. Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Chen X; Wei P; Fan L; Yang D; Zhu X; Shen W; Xu Z; Cen P Appl Microbiol Biotechnol; 2009 Jun; 83(3):507-12. PubMed ID: 19259658 [TBL] [Abstract][Full Text] [Related]
2. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Zhu X; Zhang W; Chen X; Wu H; Duan Y; Xu Z Biotechnol Bioeng; 2010 Oct; 107(3):506-15. PubMed ID: 20517869 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Xu ZN; Shen WH; Chen XY; Lin JP; Cen PL Biotechnol Lett; 2005 Aug; 27(15):1135-40. PubMed ID: 16132865 [TBL] [Abstract][Full Text] [Related]
4. [Effect of casamino acid on intergeneric conjugation in rapamycin-producing Streptomyces hygroscopicus ATCC29253]. Zhang W; Lu H; He J Wei Sheng Wu Xue Bao; 2012 Feb; 52(2):198-205. PubMed ID: 22586998 [TBL] [Abstract][Full Text] [Related]
5. Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904. Cheng YR; Huang J; Qiang H; Lin WL; Demain AL J Antibiot (Tokyo); 2001 Nov; 54(11):967-72. PubMed ID: 11827040 [TBL] [Abstract][Full Text] [Related]
6. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. Geng H; Liu H; Liu J; Wang C; Wen J World J Microbiol Biotechnol; 2017 Jun; 33(6):101. PubMed ID: 28466297 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of rapamycin and its regulation: past achievements and recent progress. Park SR; Yoo YJ; Ban YH; Yoon YJ J Antibiot (Tokyo); 2010 Aug; 63(8):434-41. PubMed ID: 20588302 [TBL] [Abstract][Full Text] [Related]
8. A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Jung WS; Yoo YJ; Park JW; Park SR; Han AR; Ban YH; Kim EJ; Kim E; Yoon YJ Appl Microbiol Biotechnol; 2011 Sep; 91(5):1389-97. PubMed ID: 21655985 [TBL] [Abstract][Full Text] [Related]
9. Interspecific protoplast fusion of Streptomyces hygroscopicus var. yingchengenisis with Streptomyces qingfengmyceticus and biological characterization of their recombinants. Zhou XF; Zhou Q Chin J Biotechnol; 1989; 5(3):161-6. PubMed ID: 2491325 [TBL] [Abstract][Full Text] [Related]
10. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. Kuscer E; Coates N; Challis I; Gregory M; Wilkinson B; Sheridan R; Petković H J Bacteriol; 2007 Jul; 189(13):4756-63. PubMed ID: 17468238 [TBL] [Abstract][Full Text] [Related]
11. Protoplast fusion and gene recombination in the uncommon Actinomycete Planobispora rosea producing GE2270. Beltrametti F; Barucco D; Rossi R; Selva E; Marinelli F J Antibiot (Tokyo); 2007 Jul; 60(7):447-54. PubMed ID: 17721003 [TBL] [Abstract][Full Text] [Related]
12. Improvement of macrolide antibiotic-producing streptomycete strains by the regeneration of protoplasts. Ikeda H; Inoue M; Omura S J Antibiot (Tokyo); 1983 Mar; 36(3):283-8. PubMed ID: 6833148 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. Dang L; Liu J; Wang C; Liu H; Wen J J Ind Microbiol Biotechnol; 2017 Feb; 44(2):259-270. PubMed ID: 27909940 [TBL] [Abstract][Full Text] [Related]
15. [Use of the protoplast fusion method in the selection of Streptomyces griseus--the producer of the streptothricin antibiotic grisin]. Kuklin VV; Emel'ianova LK; Zhdanov VG; Iustratova LS Antibiotiki; 1983 Dec; 28(12):883-9. PubMed ID: 6419670 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of pre-rapamycin, the first macrocyclic intermediate in the biosynthesis of the immunosuppressant rapamycin by S. hygroscopicus. Gregory MA; Gaisser S; Lill RE; Hong H; Sheridan RM; Wilkinson B; Petkovic H; Weston AJ; Carletti I; Lee HL; Staunton J; Leadlay PF Angew Chem Int Ed Engl; 2004 May; 43(19):2551-3. PubMed ID: 15127450 [No Abstract] [Full Text] [Related]
17. Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902-109 and Streptomyces hygroscopicus ATCC29253. Huang H; Ren SX; Yang S; Hu HF Chin J Nat Med; 2015 Feb; 13(2):90-8. PubMed ID: 25769891 [TBL] [Abstract][Full Text] [Related]
18. Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production. Li S; Chen X; Dong C; Zhao F; Tang L; Mao Z Appl Biochem Biotechnol; 2013 Jan; 169(1):338-50. PubMed ID: 23179278 [TBL] [Abstract][Full Text] [Related]
19. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Li S; Li F; Chen XS; Wang L; Xu J; Tang L; Mao ZG Appl Biochem Biotechnol; 2012 Jan; 166(2):414-23. PubMed ID: 22083395 [TBL] [Abstract][Full Text] [Related]
20. Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus. Wang B; Liu J; Liu H; Huang D; Wen J J Ind Microbiol Biotechnol; 2015 Jun; 42(6):949-63. PubMed ID: 25840873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]