These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 19259715)
1. Microbial conversion and in vitro and in vivo antifungal assessment of bioconverted docosahexaenoic acid (bDHA) used against agricultural plant pathogenic fungi. Bajpai VK; Kim HR; Hou CT; Kang SC J Ind Microbiol Biotechnol; 2009 May; 36(5):695-704. PubMed ID: 19259715 [TBL] [Abstract][Full Text] [Related]
2. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bajpai VK; Shukla S; Kang SC Bioresour Technol; 2008 Dec; 99(18):8903-8. PubMed ID: 18538562 [TBL] [Abstract][Full Text] [Related]
3. Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro. Kumar SN; Nambisan B Appl Biochem Biotechnol; 2014 Jan; 172(2):741-54. PubMed ID: 24122628 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931 [TBL] [Abstract][Full Text] [Related]
5. Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents. Wang S; Bao L; Song D; Wang J; Cao X Bioorg Med Chem Lett; 2019 Oct; 29(20):126661. PubMed ID: 31515187 [TBL] [Abstract][Full Text] [Related]
6. Effect of neem (Azardirachta indica A. Juss) seeds and leaves extract on some plant pathogenic fungi. Moslem MA; El-Kholie EM Pak J Biol Sci; 2009 Jul; 12(14):1045-8. PubMed ID: 19947185 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Fang XL; Li ZZ; Wang YH; Zhang X J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568 [TBL] [Abstract][Full Text] [Related]
8. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. Lee SO; Kim HY; Choi GJ; Lee HB; Jang KS; Choi YH; Kim JC J Appl Microbiol; 2009 Apr; 106(4):1213-9. PubMed ID: 19120615 [TBL] [Abstract][Full Text] [Related]
9. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. Song J; Hildebrand PD; Fan L; Forney CF; Renderos WE; Campbell-Palmer L; Doucette C J Food Sci; 2007 May; 72(4):M108-12. PubMed ID: 17995777 [TBL] [Abstract][Full Text] [Related]
10. Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. Oliveira TNS; Silva-Filho CMS; Malveira EA; Aguiar TKB; Santos HS; Albuquerque CC; Morais MB; Teixeira EH; Vasconcelos MA J Appl Microbiol; 2021 Apr; 130(4):1117-1129. PubMed ID: 32961612 [TBL] [Abstract][Full Text] [Related]
11. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Lee YS; Nguyen XH; Cho JY; Moon JH; Kim KY Microb Pathog; 2017 May; 106():139-145. PubMed ID: 26796297 [TBL] [Abstract][Full Text] [Related]
12. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. Park GK; Lim JH; Kim SD; Shim SH J Microbiol Biotechnol; 2012 Mar; 22(3):326-30. PubMed ID: 22450787 [TBL] [Abstract][Full Text] [Related]
13. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum. Lazar EE; Wills RB; Ho BT; Harris AM; Spohr LJ Lett Appl Microbiol; 2008 Jun; 46(6):688-92. PubMed ID: 18444976 [TBL] [Abstract][Full Text] [Related]
14. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Hwang BK; Lim SW; Kim BS; Lee JY; Moon SS Appl Environ Microbiol; 2001 Aug; 67(8):3739-45. PubMed ID: 11472958 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. Zhou Y; Yang CJ; Luo XF; Li AP; Zhang SY; An JX; Zhang ZJ; Ma Y; Zhang BQ; Liu YQ Pest Manag Sci; 2022 Oct; 78(10):4361-4376. PubMed ID: 35758905 [TBL] [Abstract][Full Text] [Related]
18. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Martínez G; Regente M; Jacobi S; Del Rio M; Pinedo M; de la Canal L Pestic Biochem Physiol; 2017 Aug; 140():30-35. PubMed ID: 28755691 [TBL] [Abstract][Full Text] [Related]
19. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217. He H; Hao X; Zhou W; Shi N; Feng J; Han L J Appl Microbiol; 2020 Apr; 128(4):1143-1152. PubMed ID: 31830360 [TBL] [Abstract][Full Text] [Related]
20. Design, Synthesis, and Antifungal Evaluation of Neocryptolepine Derivatives against Phytopathogenic Fungi. Zhu JK; Gao JM; Yang CJ; Shang XF; Zhao ZM; Lawoe RK; Zhou R; Sun Y; Yin XD; Liu YQ J Agric Food Chem; 2020 Feb; 68(8):2306-2315. PubMed ID: 31995378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]