These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 19260004)

  • 1. Modeling the separation of macromolecules: a review of current computer simulation methods.
    Slater GW; Holm C; Chubynsky MV; de Haan HW; Dubé A; Grass K; Hickey OA; Kingsburry C; Sean D; Shendruk TN; Zhan L
    Electrophoresis; 2009 Mar; 30(5):792-818. PubMed ID: 19260004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained modeling for macromolecular chemistry.
    Karimi-Varzaneh HA; Müller-Plathe F
    Top Curr Chem; 2012; 307():295-321. PubMed ID: 21360319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of DNA electrophoresis in systems of large number of solvent particles by coarse-grained hybrid molecular dynamics approach.
    Wang R; Wang JS; Liu GR; Han J; Chen YZ
    J Comput Chem; 2009 Mar; 30(4):505-13. PubMed ID: 18773412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic sorting of cells, fine particles, and macromolecules in the microchip format.
    Gonzalez CF; Remcho VT
    J Capill Electrophor Microchip Technol; 2006; 9(5-6):71-7. PubMed ID: 17094291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations.
    Binzoni T; Leung TS; Van De Ville D
    Phys Med Biol; 2009 Jul; 54(14):N303-18. PubMed ID: 19567942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous particle separation based on electrical properties using alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of IEF in microchannel with variable cross-sectional area.
    Chou Y; Yang RJ
    Electrophoresis; 2009 Mar; 30(5):819-30. PubMed ID: 19199292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved transition path sampling methods for simulation of rare events.
    Chopra M; Malshe R; Reddy AS; de Pablo JJ
    J Chem Phys; 2008 Apr; 128(14):144104. PubMed ID: 18412420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic computer simulations of electrophoresis: three decades of active research.
    Thormann W; Caslavska J; Breadmore MC; Mosher RA
    Electrophoresis; 2009 Jun; 30 Suppl 1():S16-26. PubMed ID: 19517506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained simulation of amphiphilic self-assembly.
    Michel DJ; Cleaver DJ
    J Chem Phys; 2007 Jan; 126(3):034506. PubMed ID: 17249883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device.
    Barz DP; Ehrhard P
    Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of DNA electrophoresis (approximately 1999-2002(1/2)).
    Slater GW; Guillouzic S; Gauthier MG; Mercier JF; Kenward M; McCormick LC; Tessier F
    Electrophoresis; 2002 Nov; 23(22-23):3791-816. PubMed ID: 12481277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repulsion between oppositely charged macromolecules or particles.
    Trulsson M; Jönsson B; Akesson T; Forsman J; Labbez C
    Langmuir; 2007 Nov; 23(23):11562-9. PubMed ID: 17918865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach.
    Gauthier MG; Slater GW
    J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the accuracy, the efficiency and the scope of free energy simulations.
    Rodinger T; Pomès R
    Curr Opin Struct Biol; 2005 Apr; 15(2):164-70. PubMed ID: 15837174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of emergent materials: biological and soft matter.
    Murtola T; Bunker A; Vattulainen I; Deserno M; Karttunen M
    Phys Chem Chem Phys; 2009 Mar; 11(12):1869-92. PubMed ID: 19279999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.
    Chatterjee A; Voter AF
    J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact adaptive-grid scheme for high numerical resolution simulations of isotachophoresis.
    Bercovici M; Lele SK; Santiago JG
    J Chromatogr A; 2010 Jan; 1217(4):588-99. PubMed ID: 20022605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.