These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19260046)

  • 21. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer.
    Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M
    Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic distribution in a tilapia (Oreochromis mossambicus) water-sediment aquacultural ecosystem in blackfoot disease hyperendemic areas.
    Wang SW; Lin KH; Hsueh YM; Liu CW
    Bull Environ Contam Toxicol; 2007 Feb; 78(2):147-51. PubMed ID: 17415501
    [No Abstract]   [Full Text] [Related]  

  • 23. A human PBPK/PD model to assess arsenic exposure risk through farmed tilapia consumption.
    Ling MP; Liao CM
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):108-14. PubMed ID: 19452117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan).
    Liu CW; Jang CS; Liao CM
    Sci Total Environ; 2004 Apr; 321(1-3):173-88. PubMed ID: 15050394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major contributors to inorganic arsenic intake in southeastern Michigan.
    Meliker JR; Franzblau A; Slotnick MJ; Nriagu JO
    Int J Hyg Environ Health; 2006 Sep; 209(5):399-411. PubMed ID: 16731038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool.
    Nobre RC; Rotunno Filho OC; Mansur WJ; Nobre MM; Cosenza CA
    J Contam Hydrol; 2007 Dec; 94(3-4):277-92. PubMed ID: 17728007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Geographic information system based spatial analysis on chronic arsenic poisoning in a tin mining area, Thailand].
    Zhang J; Wu L; Lin K
    Wei Sheng Yan Jiu; 2007 May; 36(3):357-60. PubMed ID: 17712962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic speciation in marine fish and shellfish from American Samoa.
    Peshut PJ; Morrison RJ; Brooks BA
    Chemosphere; 2008 Mar; 71(3):484-92. PubMed ID: 18023847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture.
    Eason A; Tim US; Wang X
    Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies.
    Fattorini D; Alonso-Hernandez CM; Diaz-Asencio M; Munoz-Caravaca A; Pannacciulli FG; Tangherlini M; Regoli F
    Mar Environ Res; 2004; 58(2-5):845-50. PubMed ID: 15178123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic Bioaccumulation and Identification of Low-Arsenic-Accumulating Food Fishes for Aquaculture in Arsenic-Contaminated Ponds and Associated Aquatic Ecosystems.
    V SK; Raman RK; Talukder A; Mahanty A; Sarkar DJ; Das BK; Bhowmick S; Samanta S; Manna SK; Mohanty BP
    Biol Trace Elem Res; 2022 Jun; 200(6):2923-2936. PubMed ID: 34467440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of background inorganic arsenic exposures to provide perspective on risk assessment results.
    Tsuji JS; Yost LJ; Barraj LM; Scrafford CG; Mink PJ
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):59-68. PubMed ID: 17346867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.
    Kattaa B; Al-Fares W; Al Charideh AR
    J Environ Manage; 2010 May; 91(5):1103-10. PubMed ID: 20133034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Groundwater arsenic in Chimaltenango, Guatemala.
    Lotter JT; Lacey SE; Lopez R; Socoy Set G; Khodadoust AP; Erdal S
    J Water Health; 2014 Sep; 12(3):533-42. PubMed ID: 25252357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan.
    Liang CP; Jang CS; Chen JS; Wang SW; Lee JJ; Liu CW
    Environ Geochem Health; 2013 Aug; 35(4):455-64. PubMed ID: 23242940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic accumulation and acute toxicity in aquacultural juvenile milkfish (Chanos chanos) from blackfoot disease area in Taiwan.
    Lin MC; Cheng HH; Lin HY; Chen YC; Chen YP; Chang-Chien GP; Chou YH; Liao CM; Dai CF; Han BC; Liu CW
    Bull Environ Contam Toxicol; 2004 Feb; 72(2):248-54. PubMed ID: 15106758
    [No Abstract]   [Full Text] [Related]  

  • 37. Towards health impact assessment of drinking-water privatization--the example of waterborne carcinogens in North Rhine-Westphalia (Germany).
    Fehr R; Mekel O; Lacombe M; Wolf U
    Bull World Health Organ; 2003; 81(6):408-14. PubMed ID: 12894324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Health risks from large-scale water pollution: trends in Central Asia.
    Törnqvist R; Jarsjö J; Karimov B
    Environ Int; 2011 Feb; 37(2):435-42. PubMed ID: 21131050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan.
    Fan C; Wang GS; Chen YC; Ko CH
    Sci Total Environ; 2009 Mar; 407(7):2165-74. PubMed ID: 19167026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A health risk assessment for exposure to trace metals via drinking water ingestion pathway.
    Kavcar P; Sofuoglu A; Sofuoglu SC
    Int J Hyg Environ Health; 2009 Mar; 212(2):216-27. PubMed ID: 18602865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.