These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19260046)

  • 41. Spatial and dynamic simulation for Miyun Reservoir waters in Beijing.
    Jia H; Cheng S
    Water Sci Technol; 2002; 46(11-12):473-9. PubMed ID: 12523796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China.
    Zeng G; Liang J; Guo S; Shi L; Xiang L; Li X; Du C
    Chemosphere; 2009 Oct; 77(3):368-75. PubMed ID: 19679329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe.
    Pistocchi A; Vizcaino P; Hauck M
    J Environ Manage; 2009 Aug; 90(11):3410-21. PubMed ID: 19540036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario.
    Mukherjee A; Sengupta MK; Hossain MA; Ahamed S; Das B; Nayak B; Lodh D; Rahman MM; Chakraborti D
    J Health Popul Nutr; 2006 Jun; 24(2):142-63. PubMed ID: 17195556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Risk assessment of arsenic-induced internal cancer at long-term low dose exposure.
    Liao CM; Shen HH; Chen CL; Hsu LI; Lin TL; Chen SC; Chen CJ
    J Hazard Mater; 2009 Jun; 165(1-3):652-63. PubMed ID: 19062162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of a groundwater contamination with vinyl chloride (VC) and precursor volatile organic compounds (VOC) by use of a geographical information system (GIS).
    Kistemann T; Hundhausen J; Herbst S; Classen T; Färber H
    Int J Hyg Environ Health; 2008 Jul; 211(3-4):308-17. PubMed ID: 17869578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach.
    Liang CP; Chen JS; Chien YC; Chen CF
    Sci Total Environ; 2018 Jun; 627():1048-1057. PubMed ID: 29426124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Joint propagation of variability and imprecision in assessing the risk of groundwater contamination.
    Baudrit C; Guyonnet D; Dubois D
    J Contam Hydrol; 2007 Aug; 93(1-4):72-84. PubMed ID: 17321003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developing risk-based target concentrations for carcinogenic polycyclic aromatic hydrocarbon compounds assuming human consumption of aquatic biota.
    Petito Boyce C; Garry M
    J Toxicol Environ Health B Crit Rev; 2003; 6(5):497-520. PubMed ID: 12888445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluating the adequacy of maximum contaminant levels as health-protective cleanup goals: an analysis based on Monte Carlo techniques.
    Finley BL; Scott P; Paustenbach DJ
    Regul Toxicol Pharmacol; 1993 Dec; 18(3):438-55. PubMed ID: 8128005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An estimation of the health impact of groundwater pollution caused by dumping of chlorinated solvents.
    Lee LJ; Chen CH; Chang YY; Liou SH; Wang JD
    Sci Total Environ; 2010 Feb; 408(6):1271-5. PubMed ID: 20060574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment.
    Posen P; Lovett A; Hiscock K; Evers S; Ward R; Reid B
    Sci Total Environ; 2006 Aug; 367(2-3):641-52. PubMed ID: 16580707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A body-weight-based method to estimate inorganic arsenic body burden through tilapia consumption in Taiwan.
    Chen BC; Liao CM
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):289-93. PubMed ID: 18297225
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cancer risk assessment from trihalomethanes in drinking water.
    Wang GS; Deng YC; Lin TF
    Sci Total Environ; 2007 Nov; 387(1-3):86-95. PubMed ID: 17727920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship of urinary arsenic metabolites to intake estimates in residents of the Red River Delta, Vietnam.
    Agusa T; Kunito T; Minh TB; Kim Trang PT; Iwata H; Viet PH; Tanabe S
    Environ Pollut; 2009 Feb; 157(2):396-403. PubMed ID: 19004533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia.
    Brammer H; Ravenscroft P
    Environ Int; 2009 Apr; 35(3):647-54. PubMed ID: 19110310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic in the human food chain: the Latin American perspective.
    Bundschuh J; Nath B; Bhattacharya P; Liu CW; Armienta MA; Moreno López MV; Lopez DL; Jean JS; Cornejo L; Lauer Macedo LF; Filho AT
    Sci Total Environ; 2012 Jul; 429():92-106. PubMed ID: 22115614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.