These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19260175)

  • 1. Is dynamics the content of a generalized motor program for rhythmic interlimb coordination?
    Amazeen PG
    J Mot Behav; 2002 Sep; 34(3):233-51. PubMed ID: 19260175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning and transfer of a relative phase pattern and a joint amplitude ratio in a rhythmic multijoint arm movement.
    Buchanan JJ; Zihlman K; Ryu YU; Wright DL
    J Mot Behav; 2007 Jan; 39(1):49-67. PubMed ID: 17251171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the attractor strength of intra- and interpersonal interlimb coordination using cross-recurrence analysis.
    Richardson MJ; Lopresti-Goodman S; Mancini M; Kay B; Schmidt RC
    Neurosci Lett; 2008 Jun; 438(3):340-5. PubMed ID: 18487016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning and transfer of an ipsilateral coordination task: evidence for a dual-layer movement representation.
    Vangheluwe S; Wenderoth N; Swinnen SP
    J Cogn Neurosci; 2005 Sep; 17(9):1460-70. PubMed ID: 16197699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry constraints mediate the learning and transfer of bimanual coordination patterns across planes of motion.
    Temprado JJ; Swinnen SP; Coutton-Jean C; Salesse R
    J Mot Behav; 2007 Mar; 39(2):115-25. PubMed ID: 17428757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metabolic and cognitive energy costs of stabilising a high-energy interlimb coordination task.
    Lay BS; Sparrow WA; O'Dwyer NJ
    Hum Mov Sci; 2005; 24(5-6):833-48. PubMed ID: 16337022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern stability and error correction during in-phase and antiphase four-ball juggling.
    Dessing JC; Daffertshofer A; Peper CE; Beek PJ
    J Mot Behav; 2007 Sep; 39(5):433-46. PubMed ID: 17827119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Cognition; 2008 Dec; 109(3):372-88. PubMed ID: 19014874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of muscular and spatial constraints on patterns of interlimb coordination.
    Park H; Collins DR; Turvey MT
    J Exp Psychol Hum Percept Perform; 2001 Feb; 27(1):32-47. PubMed ID: 11248939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-induced changes in interlimb interactions: increasing manifestations of closed-loop control.
    de Boer BJ; Peper CL; Beek PJ
    Behav Brain Res; 2011 Jun; 220(1):202-14. PubMed ID: 21310185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis.
    Richardson MJ; Schmidt RC; Kay BA
    Biol Cybern; 2007 Jan; 96(1):59-78. PubMed ID: 16953458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlimb coordination in rhythmic leg movements: spontaneous and training-induced manifestations in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2008 Oct; 100(4):2225-34. PubMed ID: 18650307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination dynamics of learning and transfer across different effector systems.
    Kelso JA; Zanone PG
    J Exp Psychol Hum Percept Perform; 2002 Aug; 28(4):776-97. PubMed ID: 12190250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effector dynamics of rhythmic wrist activity and its implications for (modeling) bimanual coordination.
    Ridderikhoff A; Peper CL; Carson RG; Beek PJ
    Hum Mov Sci; 2004 Oct; 23(3-4):285-313. PubMed ID: 15541519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of augmented feedback and prior learning on the acquisition of a new bimanual coordination pattern.
    Hurley SR; Lee TD
    Hum Mov Sci; 2006 Jun; 25(3):339-48. PubMed ID: 16707177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral phase entrainment by movement-elicited afference contributes equally to the stability of in-phase and antiphase coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Neurosci Lett; 2006 May; 399(1-2):71-5. PubMed ID: 16472912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using scanning trials to assess intrinsic coordination dynamics.
    Kovacs AJ; Buchanan JJ; Shea CH
    Neurosci Lett; 2009 May; 455(3):162-7. PubMed ID: 19429113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning a single limb multijoint coordination pattern: the impact of a mechanical constraint on the coordination dynamics of learning and transfer.
    Buchanan JJ
    Exp Brain Res; 2004 May; 156(1):39-54. PubMed ID: 14689134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interlimb and intralimb constraints on bimanual shoulder-elbow and shoulder-wrist coordination patterns.
    Li Y; Levin O; Forner-Cordero A; Swinnen SP
    J Neurophysiol; 2005 Sep; 94(3):2139-49. PubMed ID: 15928058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared neural resources between left and right interlimb coordination skills: the neural substrate of abstract motor representations.
    Swinnen SP; Vangheluwe S; Wagemans J; Coxon JP; Goble DJ; Van Impe A; Sunaert S; Peeters R; Wenderoth N
    Neuroimage; 2010 Feb; 49(3):2570-80. PubMed ID: 19874897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.