These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19260175)

  • 41. Generation of bimanual trajectories of disparate eccentricity: levels of interference and spontaneous changes over practice.
    Walter CB; Swinnen SP; Dounskaia NV
    J Mot Behav; 2002 Jun; 34(2):183-95. PubMed ID: 12057891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stability and variability of acoustically specified coordination patterns while walking side-by-side on a treadmill: does the seagull effect hold?
    van Ulzen NR; Lamoth CJ; Daffertshofer A; Semin GR; Beek PJ
    Neurosci Lett; 2010 Apr; 474(2):79-83. PubMed ID: 20226230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.
    Plautz EJ; Milliken GW; Nudo RJ
    Neurobiol Learn Mem; 2000 Jul; 74(1):27-55. PubMed ID: 10873519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Transformation of kinematic characteristics of a precise movement after change in a spatial task].
    Vasil'eva ON
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):618-28. PubMed ID: 17147203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: tracking performance and visual search behavior.
    Roerdink M; Peper CE; Beek PJ
    Hum Mov Sci; 2005 Jun; 24(3):379-402. PubMed ID: 16087264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuromuscular and spatial constraints on bimanual hand-held pendulum oscillations: dissociation or combination?
    Temprado JJ; Salesse R; Summers JJ
    Hum Mov Sci; 2007 Apr; 26(2):235-46. PubMed ID: 17363098
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Explanatory limitations of the HKB model: incentives for a two-tiered model of rhythmic interlimb coordination.
    Peper CL; Ridderikhoff A; Daffertshofer A; Beek PJ
    Hum Mov Sci; 2004 Nov; 23(5):673-97. PubMed ID: 15589628
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.
    Dyer JF; Stapleton P; Rodger MWM
    Exp Brain Res; 2017 Oct; 235(10):3129-3140. PubMed ID: 28748311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inter-limb coupling in bimanual rhythmic coordination in Parkinson's disease.
    Verheul MH; Geuze RH
    Hum Mov Sci; 2004 Oct; 23(3-4):503-25. PubMed ID: 15541532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intermanual transfer effects in sequential tactuomotor learning: evidence for effector independent coding.
    van Mier HI; Petersen SE
    Neuropsychologia; 2006; 44(6):939-49. PubMed ID: 16198379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of bimanual skill: the search for stable patterns of coordination.
    Robertson SD
    J Mot Behav; 2001 Jun; 33(2):114-26. PubMed ID: 11404208
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling inter-human movement coordination: synchronization governs joint task dynamics.
    Mörtl A; Lorenz T; Vlaskamp BN; Gusrialdi A; Schubö A; Hirche S
    Biol Cybern; 2012 Jul; 106(4-5):241-59. PubMed ID: 22648567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning as change of coordination dynamics: theory and experiment.
    Schöner G; Zanone PG; Kelso JA
    J Mot Behav; 1992 Mar; 24(1):29-48. PubMed ID: 14766496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Early learning differences between intra- and interpersonal interlimb coordination.
    Annand CT; Grover FM; Silva PL; Holden JG; Riley MA
    Hum Mov Sci; 2020 Oct; 73():102682. PubMed ID: 32971412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of learning and transfer of muscular and spatial relative phase in bimanual coordination: evidence for abstract directional codes.
    Temprado JJ; Swinnen SP
    Exp Brain Res; 2005 Jan; 160(2):180-8. PubMed ID: 15578260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial neural networks for analyzing inter-limb coordination: the golf chip shot.
    Lamb PF; Bartlett RM; Robins A
    Hum Mov Sci; 2011 Dec; 30(6):1129-43. PubMed ID: 21531031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential transfer benefits of increased practice for constant, blocked, and serial practice schedules.
    Giuffrida Cl; Shea J; Fairbrother JT
    J Mot Behav; 2002 Dec; 34(4):353-65. PubMed ID: 12446250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aging effects on the metabolic and cognitive energy cost of interlimb coordination.
    Sparrow WA; Parker S; Lay B; Wengier M
    J Gerontol A Biol Sci Med Sci; 2005 Mar; 60(3):312-9. PubMed ID: 15860466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dimensionality in rhythmic bimanual coordination.
    James EG; Layne CS
    Hum Mov Sci; 2013 Feb; 32(1):147-56. PubMed ID: 23231755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mass perturbation of a body segment: 2. Effects on interlimb coordination.
    Peper CL; Nooij SA; van Soest AJ
    J Mot Behav; 2004 Dec; 36(4):425-41. PubMed ID: 15695231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.