These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19260213)

  • 1. Bioremoval of aqueous lead using Lemna minor.
    Hurd NA; Sternberg SP
    Int J Phytoremediation; 2008; 10():278-88. PubMed ID: 19260213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor.
    Uysal Y; Taner F
    Int J Phytoremediation; 2009 Sep; 11(7):591-608. PubMed ID: 19810357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.).
    Uçüncü E; Tunca E; Fikirdeşici S; Altindağ A
    Int J Phytoremediation; 2013; 15(4):376-84. PubMed ID: 23488003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Water Sci Technol; 2012; 66(5):953-7. PubMed ID: 22797221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead and nickel removal using Microspora and Lemna minor.
    Axtell NR; Sternberg SP; Claussen K
    Bioresour Technol; 2003 Aug; 89(1):41-8. PubMed ID: 12676499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.).
    Prasertsup P; Ariyakanon N
    Int J Phytoremediation; 2011 Apr; 13(4):383-95. PubMed ID: 21598800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor.
    Oporto C; Arce O; Van den Broeck E; Van der Bruggen B; Vandecasteele C
    Water Res; 2006 Apr; 40(7):1458-64. PubMed ID: 16540144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments.
    Lin AY; Lin CA; Tung HH; Chary NS
    J Hazard Mater; 2010 Nov; 183(1-3):242-50. PubMed ID: 20696522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azadirachata indicum (Neem): an effective biosorbent for the removal of lead (II) from aqueous solutions.
    Athar M; Farooq U; Hussain B
    Bull Environ Contam Toxicol; 2007 Sep; 79(3):288-92. PubMed ID: 17639318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of calcium competition on lead sorption by palm kernel fibre.
    Ho YS; Ofomaja AE
    J Hazard Mater; 2005 Apr; 120(1-3):157-62. PubMed ID: 15811677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments.
    Yamamoto H; Nakamura Y; Moriguchi S; Nakamura Y; Honda Y; Tamura I; Hirata Y; Hayashi A; Sekizawa J
    Water Res; 2009 Feb; 43(2):351-62. PubMed ID: 19041113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation.
    Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA
    Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).
    Miretzky P; Muñoz C; Carrillo-Chávez A
    Bioresour Technol; 2008 Mar; 99(5):1211-7. PubMed ID: 17493807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption and degradation of bisphenol A by aerobic activated sludge.
    Zhao J; Li Y; Zhang C; Zeng Q; Zhou Q
    J Hazard Mater; 2008 Jun; 155(1-2):305-11. PubMed ID: 18179868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.