These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19260215)

  • 1. Translocation and accumulation of boron in roots and shoots of plants grown in soils of low boron concentration in Turkey's Keban Pb-Zn mining area.
    Sasmaz A
    Int J Phytoremediation; 2008; 10():302-10. PubMed ID: 19260215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China.
    Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C
    Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of thallium by the wild plants grown in soils of mining area.
    Sasmaz M; Akgul B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016 Nov; 18(11):1164-70. PubMed ID: 27196508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley.
    Ruiz E; Alonso-Azcárate J; Rodríguez L
    Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings.
    Yang B; Shu WS; Ye ZH; Lan CY; Wong MH
    Chemosphere; 2003 Sep; 52(9):1593-600. PubMed ID: 12867192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Sasmaz A
    Bull Environ Contam Toxicol; 2015 May; 94(5):598-603. PubMed ID: 25800342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson].
    Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R
    Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil.
    Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T
    Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook.
    Qiu R; Fang X; Tang Y; Du S; Zeng X; Brewer E
    Int J Phytoremediation; 2006; 8(4):299-310. PubMed ID: 17305304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.